Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный стабилизатор тока принцип работы

Импульсный стабилизатор: что «это» такое?

В радиотехнике широко используются, в основном, два типа стабилизаторов: линейные и импульсные.
Линейные стабилизаторы действуют по принципу резистора: ограничивают протекающий через ключевой элемент (транзистор) ток так, чтобы напряжение (или ток) в нагрузке оставались постоянными. При этом часть полезной мощности теряется (выделяется в виде тепла на регулирующем транзисторе).

В некоторых случаях эта «часть» может быть весьма значительной. Например, при входном напряжении 10 В и выходном 2,5 В падение напряжения на транзисторе составляет 7,5 В, т.е. 75% энергии источника питания тратится на паразитный разогрев транзистора и только 25% выполняют полезную работу.
Еще хуже обстоит дело с регулируемыми источниками питания, когда для большего диапазона изменения выходного напряжения разработчик пытается сделать входное напряжение побольше. В таких случаях при минимальном выходном напряжении КПД источника питания может снижаться до единиц процента.
Этого недостатка лишены импульсные стабилизаторы, способные трансформировать напряжение в ток и наоборот. Поэтому КПД «имульсни-ка», независимо от величины входного (выходного) напряжения, практически постоянен и составляет, в зависимости от схемы и используемых комплектующих, до 80. 95%. Благодаря столь высокому КПД облегчается тепловой режим устройства: его компоненты практически не греются, и там, где раньше приходилось использовать громоздкие радиаторы-теплоотводы и воющие вентиляторы, удается обойтись одной маленькой пластинкой или вообще «голым» корпусом транзистора. Уменьшается также потребляемый устройством ток, что очень важно при автономном режиме работы. Проще говоря, при входном напряжении 10 В и выходном 2,5 В потребляемый от источника питания ток будет в 4 раза меньше выходного тока (точнее, в 3,5. 3,8 раз, ведь КПД чуть ниже 100%). При этом «лишние» 7,5 В будут трансформироваться в «дополнительный» ток в полном соответствии с законом сохранения энергии. А вот у линейного стабилизатора потребляемый ток всегда чуть больше тока нагрузки.
Чем выше рабочая частота преобразователя, тем меньших размеров могут быть его самые габаритные детали — катушка индуктивности (дроссель или трансформатор) и фильтрующие конденсаторы. Образно говоря, за 1 такт сердечник дросселя или трансформатора может «запасти» небольшой «кусочек» энергии определенной величины, и «размер» этого «кусочка» не зависит от рабочей частоты. То есть просто повысив рабочую частоту, например, в 10 раз, мы сможем за то же время «передать» в нагрузку в 10 раз большую мощность при том же размере катушки и сердечника! Поэтому, если обычный 50-герцовый трансформатор мощностью 270 Вт (ТС-270) весит более 5 кг и размером с 3-литровую банку, то импульсный трансформатор на 300 Вт, работающий на частоте 30 кГц, всего лишь с 3-4 спичечных коробка.
К сожалению, частоту нельзя повышать бесконечно: для большинства недорогих ключевых транзисторов максимальная рабочая частота не превышает 100. 300 кГц, а у ферритовых сердечников на частотах выше 30. 100 кГц сильно увеличиваются потери из-за вихревых токов внутри сердечника. Поэтому оптимальная рабочая частота для «импульсника» — 30. 50 кГц. Она достаточно высока для того, чтобы человек не слышал писка при его работе (максимальная слышимая частота не превышает 20 кГц), и, в то же время, потери на такой частоте еще достаточно малы.
Однако у импульсных стабилизаторов есть и недостатки. Главный из них кроется в самом принципе действия. Стабилизатор работает в импульсном режиме и на довольно высокой частоте, поэтому он излучает весьма мощные электромагнитные (радиоволны) и электрические (пульсации напряжения) помехи. Избавиться от них очень сложно! В критических случаях проще вообще отказаться от «им-пульсников». Поэтому применять импульсные стабилизаторы целесообразно только там, где нагрузка потребляет значительный ток или мощность (более 10. 20 Вт), есть большая разница между входным и выходным напряжениями (минимум в 2. 5 раз), а нагрузка сравнительно нечувствительна к помехам и пульсациям (заряжаемый аккумулятор, лампочка, электромотор и др.). В остальных случаях, особенно если нужно работать со «звуком», лучше использовать линейный стабилизатор.
Импульсный стабилизатор состоит из пяти частей:
— схемы управления;
— ключевого транзистора;
— дросселя (катушки индуктивности с ферритовым сердечником);
— фильтрующих конденсаторов;
— обратноходового диода, в качестве которого для небольшого увеличения КПД (и значительного уменьшения нагрева корпуса) можно использовать мощный транзистор.
В зависимости от того, как соединены эти элементы, «импульсник» может повышать, понижать, а также инвертировать полярность напряжения. Также известны трансформаторные импульсные преобразователи, но они менее распространены и используются, в основном, там, где необходима гальваническая развязка (блоки питания и зарядные устройства с питанием от сети) или где нужно значительно (более чем в 3. 10 раз) повысить напряжение.
Принцип действия катушки индуктивности аналогичен таковому обычной пружины. Как можно сжать пружину, точно так же можно «закачать» энергию в катушку, причем количество запасаемой энергии зависит от ее индуктивности (количества и диаметра витков, типа сердечника). Практически от этого же (вместо сердечника выступает упругость материала) зависит и «сила» пружины. Пружину можно сжать только до некоторого предела. Далее, по мере сжатия, необходимая для дальнейшего сжатия сила плавно увеличивается. Когда витки пружины «сомкнутся», при дальнейшем сжатии мы будем только зря терять силы (можно повредить пружину или пальцы).
Так же и катушка: при подаче напряжения ее сопротивление плавно уменьшается от бесконечности до минимума, поэтому «закачиваемые» в нее импульсы должны быть относительно короткими, иначе может начаться насыщение, и индуктивное сопротивление катушки уменьшится до активного сопротивления (сопротивления на постоянном токе), которое обычно не превышает долей ома. В результате может перегореть обмотка катушки или ключевой транзистор.
Сразу после снятия воздействия на пружину она стремится распрямиться, нередко с гораздо большей скоростью, чем ее сжимали. Аналогично в катушке после закрывания ключевого транзистора возникает ЭДС самоиндукции, величина которой может быть гораздо больше напряжения питания (на этом свойстве основаны повышающие преобразователи напряжения). Ну, и третье свойство: пружина распрямляется в сторону, про-, тивоположную той, в которую ее сжимали. Соответственно, полярность напряжения на катушке при возникновении ЭДС становится противоположной (на этом свойстве основаны инверторы напряжения).
Катушка индуктивности (дроссель) — единственный прибор, который, скорее всего, потребуется изготавливать самостоятельно. «Им-пульсники» работают на сравнительно низких частотах (десятки. сотни килогерц), поэтому их катушки содержат внутри себя магнитные сердечники. Обычно используются кольца или чашки из феррита. Сердечники из трансформаторной стали не подходят! У такого дросселя будут слишком большие вихревые токи в сердечнике (токи Фуко), он будет сильно греться, а КПД устройства уменьшится на 20. 50%.
В большинстве схем импульсных преобразователей катушка работает с постоянным подмагничиванием, т.е. через нее течет не переменный ток, а пульсирующий (с постоянной составляющей). Чтобы не происходило намагничивания сердечника, его нужно собирать с диэлектрическим зазором: проложить между половинками сердечника полоску бумаги или любого другого немагнитного материала толщиной 0,1.. .0,5 мм. От этого индуктивность катушки слегка уменьшится, но и резко уменьшится опасность критического намагничивания. Кстати, поломанные сердечники (феррит очень хрупок и легко ломается) можно совершенно спокойно использовать, склеив кусочки клеем типа «Момент» или просто сильно сжав их и зафиксировав изолентой. Неразрезные сердечники (ферритовые кольца) в «им-пульсниках» лучше не применять. Их нужно разрезать алмазной пилкой (или сделать насечки краем точильного бруска и просто разломать), а потом склеить с небольшим зазором. В большинстве современных низковольтных импульсных стабилизаторов используются полевые транзисторы. Они чуть дороже биполярных, но обладают гораздо меньшим падением напряжения в открытом состоянии. Благодаря этому суммарный КПД устройства с «полевиками» на 5. 15% выше, а нагрев элементов — заметно слабее. Если биполярному транзистору в ключевом режиме уже при токе 1.. .2 А требуется радиатор охлаждения, то полевой в той же схеме способен работать без радиатора с током до 5. 10 А. Однако у «полевиков» гораздо большие паразитные емкости, поэтому при работе на высоких частотах (выше 500. 1000 кГц) или при высоком входном напряжении (выше 300. 500 В) «биполярни-ки» становятся более выгодными.
Ключевые транзисторы должны открываться и закрываться с максимально возможной быстротой, поскольку от этого зависит КПД устройства (потери в катушке). Полевые транзисторы по этому параметру «обгоняют» биполярные только при невысоких напряжениях. В высоковольтных схемах выгодней использовать IGBT-модули — комбинацию из маломощного полевого транзистора на входе и мощного биполярного на выходе. Они обладают преимуществами обоих типов транзисторов и почти не имеют недостатков. Однако, они сравнительно дороги.
Аналогичные требования предъявляются и к диоду. Ток обратного хода, протекающий через диод, практически равен прямому току через транзистор, поэтому диод должен быть достаточно мощным и с минимальным падением напряжения. Этим требованиям идеально соответствуют диоды Шотки, если бы не одно «но»: они слишком низковольтны. Максимальное рабочее напряжение для большинства диодов Шотки — всего 20. 60 В, и лишь у некоторых оно достигает 100. 200 В. А так, падение напряжения на них раза в два меньше (0,3. 0,5 В против 0,7. 1,2 В у обычных диодов с p-n-переходом) и гораздо выше максимальная рабочая частота. Благодаря этому, диоды Шот-ки греются заметно слабее. Для работы с большими напряжениями можно использовать только быстрые (Fast, F) или сверхбыстрые (Ultra Fast, UF) диоды. Обычные низковольтные выпрямительные диоды на таких частотах «захлебываются» и очень сильно греются, естественно, с потерями в КПД. Конденсаторы на выходе таких схем можно использовать только из серий с небольшим внутренним сопротивлением (более известным как «эффективное последовательное сопротивление» — ESR), так как они заряжаются и работают с мощными импульсами. Емкость конденсатора менее критична: Low-ESR конденсатора емкостью 330 мкф при работе на частоте в десятки килогерц вполне достаточно, и он более эффективен, чем «обычный» конденсатор с емкостью раз в 10 большей. Однако для обеспечения значительных пиковых токов нагрузки (например, при работе на УМЗЧ) параллельно с таким конденсатором все-таки лучше включить «обычный» емкостью пару тысяч микрофарад. В любом случае, если конденсаторы при работе на номинальную нагрузку нагреваются более чем на 10. 20°С, это однозначно свидетельствует, что у них слишком большое ESR, и они элементарно «не справляются». Обычно чем больше рабочее напряжение конденсатора, тем ниже его ESR, поэтому в импульсных преобразователях желательно использовать конденсаторы, как минимум, с двукратным запасом по напряжению. При параллельном включении нескольких конденсаторов (можно разной емкости) их суммарное ESR снижается. Во многих схемах параллельно с электролитическими конденсаторами рекомендуется включать керамические емкостью до единиц микрофарад, одноко в мощных «импульсниках» эффект от их использования можно заметить разве что по приборам.
Во всех «импульсникахя обязательны фильтрующие конденсаторы по шинам питания сравнительно большой емкости (минимум 1000 мкф на 1 А входного тока) и с низким внутренним сопротивлением- На плате этот конденсатор должен стоять как можно ближе к ключевым элементам и соединяться с ними дорожками максимальной ширины. Его также можно составлять из нескольких параллельно соединенных конденсаторов. Рабочее напряжение конденсатора — минимум в 1,5 раза больше максимального входного напряжения.

Читайте так же:
Стабилизатор напряжения регулятор тока

Схему управления современных «импульсников» собирают на базе специализированных микросхем. Они сравнительно дешевы, обладают великолепными характеристиками и практически не требуют подключения внешних элементов и кропотливой настройки. Для управления полевыми транзисторами необходимы микросхемы с мощными выходами: для достижения максимального КПД транзистор должен быстро открываться (за время порядка сотен наносекунд), а у полевых транзисторов емкость затвора очень велика. Поэтому микросхема-драйвер полевого транзистора должна иметь попумос-товой выход, способный обеспечить ток 0,2.. .2,0 А. Чем выше рабочая частота, тем большим должен быть выходной ток. Этот ток потребляется транзистором кратковременно (пока не зарядится или разрядится емкость затвора), а все остальное время ток не потребляется. Поэтому более мощный драйвер не приведет к увеличению энергопотребления, а наоборот, КПД схемы только возрастет.

Схема повышающего преобразователя напряжения показана на рис.1 а. Во время рабочего хода, когда транзистор открыт, катушка запасает энергию. Ее можно представить как батарейку (конденсатор), положительный полюс которой — вверху схемы (рис.1 б). Диод при этом закрыт, постоянное напряжение на выходе поддерживается конденсатором. После запирания транзистора полярность напряжения на выводах катушки из-за ЭДС самоиндукции меняется на противоположную, она суммируется с напряжением питания и через открывшийся диод подзаряжает конденсатор (рис.1 в). Таким способом, в принципе, можно получить сколь угодно большое напряжение, но обычно оно не превышает несколько сотен вольт из-за потерь как в самой катушке, так и в других элементах схемы.
При сборке такой схемы нужно уделить особое внимание надежности элементов и монтажа. Транзистор, конденсатор и диод в этой схеме должны быть рассчитаны на максимальное выходное напряжение плюс 10. 20 В запаса.

Инвертор напряжения работает по аналогичному принципу (рис.2а). Пока транзистор открыт (рис.2б), катушка накапливает энергию., а диод закрыт обратным напряжением. После запирания транзистора на верхнем по схеме выводе катушки появляется отрицательный потенциал, и она через диод подзаряжает отрицательным напряжением конденсатор (рис.2в).
Конденсатор в этой схеме должен быть рассчитан на максимальное выходное напряжение (плюс запас), транзистор и диод — на выходное плюс напряжение питания.

Повышающий импульсный стабилизатор напряжения, источник питания. Преимущества, недостатки, применение. Принцип работы. Примеры схем

Как работает повышающий стабилизированный преобразователь напряжения. Где он применяется. Описание принципа действия. Пошаговая инструкция по разработке и расчету (10+)

Повышающий импульсный стабилизатор напряжения. Схемы. Расчет — Принцип действия

Читайте так же:
Стабилизатор с усилением по току
1 2 3 4 5

Повышающий преобразователь напряжения применятся тех схемах, где необходимо получить напряжение, большее, чем напряжение питания схемы. При этом важны малые габариты и высокий КПД, но терпим некоторый уровень высокочастотных шумов.

Принцип работы повышающего стабилизированного преобразователя напряжения очень похож на принцип работы понижающего преобразователя. Я рекомендую ознакомиться со статьей по ссылке, прежде чем читать этот материал. Несколько другая схема включения индуктора, диода и конденсатора позволяет получить на выходе повышенное напряжение.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Когда ключ замкнут, к катушке индуктивности приложено входное напряжение. Сила тока в дросселе нарастает, индуктор накапливает энергию. Ток идет по контуру S1. Диод исключает разряд выходного конденсатора C2 через замкнутый ключ. В этот период времени выходной ток, потребляемый нагрузкой, поддерживается за счет заряда, накопленного на конденсаторе C2.

Так как моментально изменение силы тока через дроссель невозможно, после размыкания ключа, ток дросселя через диод течет по контуру S2. Он заряжает выходной конденсатор C2. При этом напряжение на этом конденсаторе получается больше, чем входное.

Блок управления D1 формирует широтно-импульсно модулированный сигнал, то есть формирует импульсы управления ключом переменной скважности. Время, в течение которого ключ остается открытым, зависимост от напряжения на конденсаторе C2.

Конденсатор C1 нужен для того, чтобы защитить входную цепь от пульсаций тока, отбирать из нее не импульсный, а средний ток.

Преимущества, недостатки, применимость

Потери энергии в повышающем преобразователе, также как и в понижающем, и в инвертирующем, пропорциональны отношению входного и выходного напряжений. Поэтому инвертирующие преобразователи применяются, если выходное напряжение больше входного не более чем 4 раза.

В таком преобразователе не применяется выходной трансформатор, следовательно нет паразитной индуктивности утечки между обмотками — главной причиной, ограничивающей мощность импульсных преобразователей. С другой стороны, мы не имеет возможность развязать входную и выходную цепи.

Примером схемы повышающего преобразователя напряжения может быть Корректор коэффициента мощности.

Проектирование инвертирующего преобразователя

Рассмотрим типичные схемы повышающего преобразователя и подробно разберем процесс проектирования и расчета. В конце статьи будет форма, в которую можно забить необходимые параметры источника, провести расчет онлайн и получить номиналы всех элементов. Эта форма считает номиналы сразу для всех трех схем. Если в выбранной Вами схеме этих элементов нет, то их номиналы нужно игнорировать.


Схема 1


Схема 2


Схема 3

Повышающая топология — самая простая в реализации, так как эмиттер (исток) силового транзистора в не соединен с общим проводом. Нет необходимости в специальных ухищрениях при подаче управляющего напряжения на базу (затвор). Достаточно подать это напряжение напрямую. С формированием сигнала обратной связи тоже нет никаких проблем. Если ток нагрузки относительно небольшой, то и сигнал ограничения тока снять совсем просто. В эмиттерной (истоковой) цепи устанавливается резистор. Если ток через этот резистор превышает максимально допустимый, то напряжение на этом резисторе превышает напряжение срабатывания защиты контроллера, и ключ принудительно закрывается.

Если ток нагрузки большой, то потери энергии на резисторе R7 становятся недопустимой роскошью. Тогда применяется трансформатор тока.

Если применяется маломощный контроллер, не способный раскачать мощный биполярный транзистор, то нужно поставить дополнительный транзистор, как это показано на схеме. Применение составного транзистора нежелательно, так как потери энергии на транзисторе тем больше, чем больше напряжение насыщения коллектор — эмиттер, а у составного транзистора напряжение насыщения больше в разы, чем у обычного.

На схеме 3 показано применение трансформатора тока и дополнительного маломощного транзистора. Но это не означает, что их можно применять только вместе. Трансформатор тока можно применять в схемах с полевым транзистором и в схемах с мощным контроллером. А маломощный транзистор можно применять в схемах с резистором R7. Эти два решения показаны на одной схеме просто для примера. Обратите внимание! Если в схеме 3 для управления транзисторами используется ШИМ — контроллер с открытым эмиттером на выходе, то между базой и эмиттером транзистра VT7 нужно включить резистор сопротивлением 300 — 400 Ом для надежного запирания транзистора VT7. Если же на выходе контроллера стоит двухтактный каскад, как в той микросхеме, которую применяем мы, то в таком резисторе потребности нет.

Как быть в случае, если входное напряжение больше, чем допустимое напряжение на затворе полевого транзистора или допустимое напряжение питания контроллера, описано в статье про понижающий преобразователь. Для повышающего решение совершенно аналогично.

Для примера в качестве ШИМ — контроллера мы используем микросхему 1156EU3.

В схемах в качестве силового ключа используются мощный биполярный транзистор или мощный полевой транзистор. Подробнее о работе биполярного транзистора и полевого транзистора в качестве силового ключа.

1 2 3 4 5

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Инвертирующий импульсный преобразователь напряжения, источник питания.
Как работает инвертирующий стабилизатор напряжения. Где он применяется. Описание.

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.

Мостовой импульсный стабилизированный преобразователь напряжения, исто.
Как работает мостовой стабилизатор напряжения. Где он применяется. Описание прин.

Понижающий импульсный преобразователь напряжения, источник питания. Ко.
Как сконструировать понижающий импульсный преобразователь. Шаг 1. Как выбрать ча.

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида.
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

Простейший стабилизатор постоянного тока

Полупроводниковый прибор, о котором пойдет речь, предназначен для стабилизации тока на требуемом уровне, обладает низкой стоимостью и дает возможность упростить разработку схем многих электронных приборов. Попытаюсь немного восполнить недостаток информации о простых схемотехнических решениях стабилизаторов постоянного тока.

Немного теории

Идеальный источник тока обладает бесконечно большим ЭДС и бесконечно большим внутренним сопротивлением, что позволяет получить требуемый ток в цепи независящий от сопротивления нагрузки.

Условное графическое обозначение источника тока:

Рассмотрение теоретических допущений о параметрах источника тока помогает понять определение идеального источника тока. Ток, создаваемый идеальным источником тока остается постоянным при изменении сопротивления нагрузки от короткого замыкания до бесконечности. Для поддержания величины тока неизменной значение ЭДС меняется от величины не равной нулю до бесконечности. Свойство источника тока, позволяющее получить стабильное значение тока: при изменении сопротивления нагрузки изменяется ЭДС источника тока таким образом, что значение тока остается постоянным.

Читайте так же:
Стабилизатор тока с ттл модуляцией что это

Реальные источники тока поддерживают ток на требуемом уровне в ограниченный диапазон напряжения, создаваемого на нагрузке и ограниченном сопротивление нагрузки. Идеальный источник рассматривается, а реальный источник тока может работать при нулевом сопротивлении нагрузки. Режим замыкания выхода источника тока не является исключением или трудно реализуемой функцией источника тока, это один из режимов работы, в который может безболезненно перейти прибор при случайном замыкании выхода и перейти на режим работы с сопротивлением нагрузки более нуля.

Реальный источник тока используется совместно с источником напряжения. Сеть 220 вольт 50 Гц, лабораторный блок питания, аккумулятор, бензиновый генератор, солнечная батарея – источники напряжения, поставляющие электроэнергию потребителю. Последовательно с одним из них включается стабилизатор тока. Выход такого прибора рассматривается как источник тока.

Простейший стабилизатор тока представляет собой двухвыводной компонент, ограничивающий протекающий через него ток величиной и точностью соответствующей данным фирмы изготовителя. Такой полупроводниковый прибор в большинстве случаев имеет корпус, напоминающий диод малой мощности. Благодаря внешнему сходству и наличию всего двух выводов компоненты этого класса часто упоминаются в литературе как диодные стабилизаторы тока. Внутренняя схема не содержит диодов, такое название закрепилось только благодаря внешнему сходству.

Примеры диодных стабилизаторов тока

Диодные стабилизаторы тока выпускаются многими производителями полупроводников.

1N5296
Производители: Microsemi и CDI

Ток стабилизации 0,91мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 1,29 В
Максимальное импульсное напряжение 100 В

E-103
Производитель Semitec

Ток стабилизации 10 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4,2 В
Максимальное импульсное напряжение 50 В

L-2227
Производитель Semitec

Ток стабилизации 25 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4 В
Максимальное импульсное напряжение 50 В

От теории к практике

Применение диодных стабилизаторов тока упрощает электрические схемы и снижает стоимость приборов. Использование диодных стабилизаторов тока привлекательно не только своей простотой, но и повышением устойчивости работы разрабатываемых приборов. Один полупроводник этого класса в зависимости от типа обеспечивает стабилизацию тока на уровне от 0,22 до 30 миллиампер. Наименования этих полупроводниковых приборов по ГОСТу и схемного обозначения найти не удалось. В схемах статьи пришлось применить обозначение обычного диода.

При включении в цепь питания светодиода диодный стабилизатор обеспечивает требуемый режим и надежную работу. Одна из особенностей диодного стабилизатора тока – работа в диапазоне напряжений от 1,8 до 100 вольт позволяющая защитить светодиод от выхода из строя при воздействии импульсных и длительных изменений напряжения. Яркость и оттенок свечения светодиода зависят от протекающего тока. Один диодный стабилизатор тока может обеспечить режим работы нескольких последовательно включенных светодиодов, как показано на схеме.

Эту схему легко преобразовать в зависимости от светодиодов и напряжения питания. Один или несколько параллельно включенных диодных стабилизаторов тока в цепь светодиодов зададут ток светодиодов, а количество светодиодов зависит от диапазона изменения напряжения питания.

С помощью диодных источников тока можно построить индикаторный или осветительный прибор, предназначенный для питания от постоянного напряжения. Благодаря питанию стабильным током источник света будет иметь постоянную яркость свечения при колебаниях напряжения питания.

Использование резистора в цепи светодиода индикатора напряжения питания двигателя постоянного тока станка сверловки печатных плат приводило к быстрому выходу светодиода из строя. Применение диодного стабилизатора тока позволило получить надежную работу индикатора. Диодные стабилизаторы тока допускается включать параллельно. Требуемый режим питания нагрузок можно получить, меняя тип или включая параллельно требуемое количество этих приборов.

При питании светодиода оптопары через резистор пульсации напряжения питания схемы приводят к колебаниям яркости, накладывающимся на фронт прямоугольного импульса. Применение диодного стабилизатора тока в цепи питания светодиода, входящего в состав оптопары, позволяет снизить искажение цифрового сигнала, передаваемого через оптопару и увеличить надежность канала информации.

Применение диодного стабилизатора тока задающего режим работы стабилитрона позволяет разработать простой источник опорного напряжения. При изменении питающего тока на 10 процентов напряжение на стабилитроне меняется на 0,2 процента, а так как ток стабилен, то величина опорного напряжения стабильна при изменении других факторов.

Влияние пульсаций питающего напряжения на выходное опорное напряжение уменьшается на 100 децибел.

Внутренняя схема

Вольтамперная характеристика помогает понять работу диодного стабилизатора тока. Режим стабилизации начинается при превышении напряжения на выводах прибора около двух вольт. При напряжениях более 100 вольт происходит пробой. Реальный ток стабилизации может отклоняться от номинального тока на величину до десяти процентов. При изменении напряжения от 2 до 100 вольт ток стабилизации меняется на 5 процентов. Диодные стабилизаторы тока, выпускаемые некоторыми производителями, изменяют ток стабилизации при изменении напряжения до 20 процентов. Чем выше ток стабилизации, тем больше отклонение при увеличении напряжения. Параллельное включение пяти приборов, рассчитанных на ток 2 миллиампера, позволяет получить более высокие параметры, чем у одного на 10 миллиампер. Так как уменьшается минимальное напряжение стабилизации тока, то диапазон напряжения в котором работает стабилизатор увеличивается.

Основой схемы диодного стабилизатора тока является полевой транзистор с p-n переходом. Напряжение затвор-исток определяет ток стока. При напряжении затвор-исток равному нулю ток через транзистор равен начальному току стока, который течет при напряжении между стоком и истоком более напряжения насыщения. Поэтому для нормальной работы диодного стабилизатора тока напряжение, приложенное к выводам должно быть больше некоторого значения от 1 до 3 вольт.

Полевой транзистор имеет большой разброс начального тока стока, точно эту величину предсказать нельзя. Дешевые диодные стабилизаторы тока представляют собой отобранные по току полевые транзисторы, у которых затвор соединен с истоком.

При смене полярности напряжения диодный стабилизатор тока превращается в обычный диод. Это свойство обусловлено тем, что p-n переход полевого транзистора оказывается смещенным в прямом направлении и ток течет по цепи затвор-сток. Максимальный обратный ток некоторых диодных стабилизаторов тока может достигать 100 миллиампер.

Источник тока 0.5А и более

Для стабилизации токов силой 0,5-5 ампер и более применима схема, главный элемент которой мощный транзистор. Диодный стабилизатор тока стабилизирует напряжение на резисторе 180 Ом и на базе транзистора КТ818. Изменение резистора R1 от 0,2 до10 Ом изменяется ток, поступающий в нагрузку. С помощью этой схемы можно получить ток, ограниченный максимальным током транзистора или максимальным током источника питания. Применение диодного стабилизатора тока с наиболее возможным номинальным током стабилизации улучшает стабильность выходного тока схемы, но при этом нельзя забывать о минимально возможном напряжении работы диодного стабилизатора тока. Изменение резистора R1 на 1-2 Ом значительно меняет величину выходного тока схемы. Этот резистор должен иметь большую мощность рассеяния тепла, изменение сопротивления из-за нагрева приведет к отклонению выходного тока от заданного значения. Резистор R1 лучше собрать из нескольких параллельно включенных мощных резисторов. Резисторы, применённые в схеме должны иметь минимальное отклонение сопротивления при изменении температуры. При построении регулируемого источника стабильного тока или для точной настройки выходного тока резистор 180 Ом можно заменить переменным. Для улучшения стабильности тока транзистор КТ818 усиливается вторым транзистором меньшей мощности. Транзисторы соединяются по схеме составного транзистора. При использовании составного транзистора минимальное напряжение стабилизации увеличивается.

Читайте так же:
Микросхемы линейных стабилизаторов тока

Эту схему можно использовать для питания соленоидов, электромагнитов, обмоток шаговых двигателей, в гальванике, для зарядки аккумуляторов и других целей. Транзистор обязательно устанавливается на радиатор. Конструкция прибора должна обеспечивать хороший теплоотвод.

Если бюджет проекта позволяет увеличить затраты на 1-2 рубля и конструкция прибора допускает увеличение площади печатной платы, то использую параллельное объединение диодных стабилизаторов тока можно улучшить параметры разрабатываемого прибора. Соединенные параллельно 5 компонентов 1N5305 позволят стабилизировать ток на уровне 10 миллиампер, как и компонент СDLL257, но минимальное напряжение работы в случае пяти 1N5305 составит 1,85 вольт, что важно для схем с напряжением питания 3,3 или 5 вольт. Также к положительным свойствам 1N5305 относится его доступность, по сравнению с приборами производителя Semitec. Соединение параллельно группы стабилизаторов тока вместо одного позволяет снизить нагрев разрабатываемого прибора и отодвинуть верхнюю границу температурного диапазона.

Увеличение рабочего напряжения

Для использования диодных стабилизаторов тока при напряжениях более напряжения пробоя последовательно включается один или несколько стабилитронов, при этом область напряжений работы диодного ограничителя тока смещается на величину стабилизации напряжения стабилитроном. Схему можно использовать для грубого определения превышения порогового значения напряжения.

Найти отечественные аналоги зарубежных диодных стабилизаторов тока не удалось. Вероятно с течением времени ситуация с отечественными диодными стабилизаторами тока изменится.

Регулируемые стабилизаторы напряжения и тока LM317 (КР142ЕН12) и LM337
(КР142ЕН18) для источников и блоков питания.

Характеристики, особенности применения, схемы включения, онлайн калькуля- торы. Однополярные и двуполярные блоки питания на ИМС LM317 и LM337.

Среди микросхем регулируемых стабилизаторов напряжения и тока одними из самых популярных являются ИМС LM317 и LM337. Благодаря своим приличным характеристикам, низкой стоимости и удобного для монтажа исполнения, эти микросхемы при минимальном наборе внешних деталей отлично справляются с функцией несложных регулируемых источников и блоков питания для бытовой и промышленной электронной аппаратуры.
Микросхемы идентичны по своим параметрам, разница заключается лишь в том, что LM317 является регулируемым стабилизатором положительного относительно земли напряжения, а микросхема LM337 — регулируемым стабилизатором отрицательного напряжения.

Аналогами стабилизатора LM317 на отечественном рынке является модификация КР142ЕН12, а LM337 — КР142ЕН18.

Если полутора ампер выходного тока покажется недостаточно, то LM317 можно заменить на LM350 с выходным током 3 ампера и LM338 — 5А. Схемы включения останутся точно такими же.

Для удобства описание поведём для более распространённого стабилизатора блока питания с положительной полярностью напряжения (LM317), но всё сказанное и нарисованное на схемах будет так же верно для стабилизаторов с минусовой полярностью (LM317). Однако важно заметить, что при смене полярности стабилизатора — необходимо также изменить на схемах: полярность включения всех диодов, электролитических конденсаторов, а также тип проводимости внешних транзисторов (в случае их наличия). И не стоит забывать, что цоколёвки у этих микросхем разные!

Начнём с главного:
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СТАБИЛИЗАТОРОВ LM317, LM337 в корпусе TO-220:

Максимальное входное напряжение блока питания — 40 В;
Регулирование выходного напряжения — от 1,25 до 37 В;
Точность установки и поддержания выходного напряжения — 0,1%;
Максимальный ток нагрузки — 1,5 A;
Минимальный ток нагрузки — 3,5. 10 мА;
Наличие защиты от возможного короткого замыкания и перегрева;

Давайте не будем сильно отвлекаться на разнообразные любительские реализации стабилизаторов на LM317 и LM337, а сделаем основной упор на рекомендациях и схемах, приведённых в datasheet-ах на микросхемы. Типовая схема включения LM317 с функцией регулировки напряжения приведена на Рис.1


Рис.1 Типовая схема включения LM317

Диоды D1 и D2 предназначены для защиты микросхемы, а конкретно — быстрого и безопасного разряда конденсаторов в случае возникновения короткого замыкания (D1 — по входу, D2 — по выходу). При выходных напряжениях менее 25 В производитель ИМС допускает работу стабилизатора без использования защитных диодов.
Конденсатор С2 снижает уровень пульсаций на выходе микросхемы на 15 дБ. Увеличение номинала этого конденсатора свыше 10 МкФ не только не приведёт к существенному снижению пульсаций, но и окажет вредное влияние на скорость реакции стабилизатора на изменение выходного напряжения.

Номинал резистора R1 жёстко определяется в техническом паспорте как 240 Ом, хотя ничего плохого не случится, если выбрать его значение в диапазоне 200. 270 Ом.
Величина R2 вычисляется исходя из формулы Vout = Vref x (1+R2/R1) + Iadj x R2 , где
Vref ≈ 1,25В , а Iadj ≈ 50 мкА .

Онлайн калькулятор для расчёта стабилизатора напряжения на основе LM317 (LM337).
Выходное напряжение не может принимать значений ниже 1,25 В.

На Рис.2 изображена схема интегрального стабилизатора напряжения с функцией плавного пуска питания, собранная на всё том же регуляторе напряжения LM317 и тоже взятая из datasheet-а на микросхему.


Рис.2 Схема стабилизатора напряжения с функцией плавного пуска питания

В начальный момент включения источника питания конденсатор C1 разряжен и представляет собой КЗ. Напряжение на эмиттере транзистора близко к нулю, соответственно напряжение на выходе микросхемы минимально и составляет величину — около 1,2 В. По мере заряда конденсатора напряжение на эмиттере растёт, напряжение на выходе микросхемы — тоже. В какой-то момент напряжение на базе достигнет значения, при котором транзистор полностью закроется, и на выходе стабилизатора установится уровень напряжения, определяемый номиналами резисторов R1, R2.
При установке защитных диодов (как это сделано на Рис.1) ничто не мешает использовать эту схему и с более высокими выходными напряжениями.

Если возникла необходимость ввести в блок питания стабилизатор (ограничитель) тока нагрузки, то для этой цели также подойдёт ИМС LM317, причём схема получается ещё проще, чем в случае использования её в качестве стабилизатора напряжения.

Рис.3 Ограничитель тока на LM317

Такое устройство может быть полезно для зарядки аккумуляторов, питания светодиодов, ограничения тока нагрузки источника питания и т. д.
При выборе номинала сопротивления R1 в диапазоне 0,8. 125 Ом ограничение выходного тока будет происходить на уровнях: от 10 мА до 1,56 А, а формула, для расчёта конкретного значения тока выглядит следующим образом: I = Iadj + Vref/R1 ≈ 1,25/R1 .

Онлайн калькулятор для расчёта стабилизатора тока на основе LM317 (LM337).

Если необходимо поиметь в хозяйстве источник, как с регулировкой выходного напряжения, так и с ограничением выходного тока, то существует возможность использовать два варианта:
1. Соединить последовательно стабилизатор тока (Рис.3) и стабилизатор напряжения (Рис.1), либо
2. Либо использовать ещё одну схему из datasheet-а.

Читайте так же:
L7812cv стабилизатор тока схема


Рис.4 Схема стабилизатора с ограничением выходного тока

Область применения схемы, приведённой на Рис.4, декларируется производителем — как зарядное устройство для 6-вольтовых аккумуляторов, но её вполне можно расширить, подключив к выходу любую нагрузку и используя обвес, взятый с типовой схемы включения (Рис.1).
Ток ограничения (стабилизации) устройства рассчитывается исходя из формулы: I ≈ 0,6//R1 , А учитывая дополнительное падение напряжения на резисторе R1, при расчёте выходного напряжения в калькуляторе — следует вводить величину Uвых, на 0,6 В превышающую необходимое значение.

Теперь что касается умощнения микросхем. Здесь datasheet также предполагает 2 варианта:
1. Параллельное соединение микросхем, но не примитивное (как порой можно встретить на некоторых интернет просторах), а довольно сложное, посредством ОУ и дополнительного транзистора. Эту схему я не вижу особого смысла рассматривать ввиду того, что подобную задачу можно решить более гуманными методами.
2. Умощнение внешним транзистором (Рис.5):

Рис.5 Умощнение стабилизатора напряжения на LM317 внешним транзистором

Силовой умощняющий транзистор следует выбирать исходя из максимального тока нагрузки и максимальной мощности, рассеиваемой на нём.
До того момента, когда падение напряжения на резисторе R1 достигнет уровня 0,6. 0,7 В транзистор закрыт, и весь ток в нагрузку течёт через микросхему стабилизатора. При достижении указанного уровня падения напряжения транзистор приоткрывается и также начинает отдавать ток в нагрузку, разгружая тем самым микросхему. Чем больше ток — тем сильнее открыт транзистор, тем большее относительное значение тока через него протекает в нагрузку.
Главный вопрос, возникающий у радиолюбителя — какого номинала следует выбирать резистор.
Для начала надо задаться некой величиной тока, протекающего через ИМС стабилизатора Ireg , не слишком большой (чтобы микросхема не сильно грелась), но и не слишком малой (для сохранения её стабильной и устойчивой работы). Обычно величина это тока выбирается в пределах 0,1. 0,3 А.
Определившись с этим значением, следует выбрать транзистор, исходя из максимального тока нагрузки, с параметром β > 1.1 x Iнмакс / Ireg . Будет лучше, если запас усиления транзистора составит величину — 10. 20%.
Тогда значение R1 можно будет вычислить по следующей формуле:
R1 ≈ (β x Vбэ) / (Ireg x β — Iнмакс) , где Vбэ ≈ 0,7В для простых транзисторов и 1,4В — для составных.

Таким же способом можно умощнить и стабилизатор (ограничитель) тока нагрузки (Рис.6).

Рис.6 Умощнение стабилизатора тока на LM317 внешним транзистором

И под занавес приведу схему двуполярного источника питания с регулируемым напряжением (± 1,2. 35 В), опубликованную в одном из зарубежных источников (Рис.7).


Рис.7 Схема двуполярного блока питания

Для повышения надёжности устройства в него следует добавить пару защитных диодов по аналогии со схемой, изображённой на Рис.1.

Импульсный стабилизатор напряжения на микросхеме МС34063

Многие люди, далёкие от электроники, считают, что все приборы питаются от обычного сетевого напряжения 220В — это логично, ведь чтобы включить устройство, мы втыкаем штекер в розетку, а не куда-либо ещё. Но на самом деле, электронные схемы, как правило, питаются от низкого напряжения, обычно в диапазоне 3,3 — 12В, а вот исполнительные устройства, какие-либо лампочки, насосы, ТЭНы, любая силовая электроника уже питается напрямую от 220В, а низковольтная логическая электроника при этом выступает в роли «мозгов» устройства. Создание источников питания — довольно интересная и обширная область в радиоэлектронике, ведь для преобразования высокого сетевого напряжения в низкое требуются либо специальные устройства — трансформаторы, либо целые отдельные электронные устройства — импульсные блоки питания. Кроме того, помимо задачи понижения сетевого напряжения часто встаёт вопрос о преобразовании одного низкого напряжения в другое, например, часто требуется получить из 12В, например, 3В, 5В, либо какое-то другое значение. Есть и обратная задача — как из 3 или 5В получить более высокое напряжение. Например, повышающие преобразователи используются в каждом power-bankе, там напряжение с литий-ионных аккумуляторов (оно равно 3,3-4,2В) нужно повысить до стабильных 5В, от которых уже можно зарядить телефон либо питать другие гаджеты. В случае, если постоянное напряжение нужно понизить на ум сразу приходят стабилизаторы серии 78lХХ, они могут иметь разный индекс (обозначен ХХ), соответственно и разное напряжение на выходе, например, 7805 понижает ровно до 5В, 7809 до 9 вольт, аналогично и с другими значениями. Эти микросхемы — линейные стабилизаторы, их особенностью является то, что они рассеивают на себе всю разницу напряжений между входом и выходом, а потому ощутимо нагреваются и при работе с приличными токами требуют массивных радиаторов.

Ниже представлен вариант схемы, позволяющий регулировать напряжение на выходе переменным резистором:

Как можно заметить, схема почти не отличается от предыдущей, за исключением того, что вместо делителя R1 R2 подключен переменный резистор на 10 кОм между выходом и землёй, а его средний вывод также подключается к пятому выводу микросхемы, обеспечивая работу обратной связи. Здесь можно использовать любой переменный резистор с сопротивлением 10-47 кОм, его можно вывести с платы на проводах, либо впаять прямо на плату. Также на этой схеме можно увидеть низкоомный резистор R1 на входе схемы, он имеет сопротивление всего 0,3 Ома, что очень мало. Он необходим для ограничения бросков тока при включении схемы, чтобы ток заряда конденсаторов, подключенных к выходу стабилизатора, не вывел микросхему из строя. Данный резистор не является обязательным, но его наличие желательно в обоих вариантах схем.

На картинке выше приведены графики, взятые из документации на микросхему МС34063, самые любопытные могут ознакомиться с её режимы работы и параметрами.

Схема собирается на миниатюрной печатной плате, элементы используются в планарных корпусах. Вход и выход поступают на плату через три контакта, из которых «+» — входное напряжение, «-» — общая земля схемы, «5в» — выходное напряжение. Как можно заметить, такая распиновка совпадает с расположением выводов микросхем серии 78lХХ, а потому, припаяв на такую платку штырьковые выводы, ей можно заменять микросхемы 78lХХ, располагая плату вертикально. Вместо переменного резистора автор использует подстроечный многооборотный, он позволяет задавать напряжение на выходе с точностью чуть ли не до сотых вольта. Ниже представлены фотографии готовой платы.

Таким образом, получился отличный вариант импульсного стабилизатора, который с успехом может заменить линейные стабилизаторы в тех случаях, когда ток не превышает 500-700 мА. Для повышения рабочего тока схемы её нужно модифицировать путём добавления дополнительного транзистора. Удачной сборки! Все вопросы и дополнения пишите в комментарии.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector