Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный стабилизатор тока ne555

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

ШИМ регулятор 12В на 555

Представляем простую конструкцию регулятора мощности, схема которого построена на таймере 555, работающем в режиме ШИМ. Транзисторы IRF3205 являются управляемыми элементами, причем транзисторы соединены параллельно для уменьшения сопротивления и лучшего рассеивания тепла.

Схема ШИМ на 12 В для ламп

Напряжение от трансформатора выпрямляется мостом на 50 А, установленным на радиаторе. Подается оно далее на стабилизатор 8 В, а затем в схему управления. Устройство должно было работать с несколькими галогенками 12 В 50 Вт.

Кстати, вы можете хорошо уменьшить нагрев транзисторов снизив частоту коммутации — на это стоит обратить внимание.

При полной яркости будет ток в нагрузке около 25 А. Так что уделите особое внимание винтовым соединительным разъемам. Кабели сечением 1,5 мм2 тоже недостаточны для такого большого тока.

Конечно, затворы лучше переключать напряжением около 10 — 12 В (не более 15 В для безопасности МОП-транзисторов), чем 6 В, хотя бы для того чтобы быть уверенным в их насыщении во включенном состоянии. А более высокое напряжение также означает более быструю перезагрузку затворов, что приводит к более короткому переходному времени, а это снижает потери мощности на них. Если они не насыщаются, то тепло, генерируемое на них с высокой рабочей мощностью, заставит транзисторы сильно греться.

Чтобы поднять управляющее напряжение, достаточно подключить R3 напрямую к источнику питания, а не к стабилизатору. Чтобы ускорить переключение, предлагаем конденсатор 0.1 мкФ поставить параллельно с R2 и, если необходимо, дополнительно в ряд перед этим параллельным соединением резистор, чтобы минимизировать токи при разряде конденсатора.

Вместо резистора R3 ещё лучше ставить резисторы 5-10 Ом в затворах mosfet и использовать более мощные биполярные транзисторы, например семейства BD136 — BD140 соответствующих типов проводимости.

Упрощенный ШИМ 12V регулятор постоянного тока

Для регуляторов оборотов мотора постоянного тока можно использовать эту, показанную выше схему. Здесь нет необходимости использовать управляющие транзисторы. Mosfet могут быть подключены параллельно, добавив один 30-ти омный резистор к затвору каждого транзистора. Плату можете скачать в архиве.

Микросхема 555 практическое применение

Автор: с2. Опубликовано в Все статьи

Наверное нет такого радиолюбителя, который не использовал бы в своей практике эту микросхему.

Микросхема существует с 1971 года, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер»,

Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 39 лет практически каждый уважающий себя производитель полупроводников, считал свои долгом выпустить свою версию этой микросхемы.

Но при этом в функциональности и расположении выводов никаких различий нет. Все они полные аналоги оригинала Signetics Corporation. Новые виды схемных решений находятся и по сей день .

Меня эта микросхема по прежнему часто удивляет , как изменив в схеме подключение одного элемента, схема приобретает новую функциональность.

В статье простые схемы примеры практического применения данной микросхемы

Триггер Шмидта.

Это очень простая, но эффективная схема. Схема позволяет, подавая на вход аналоговый сигнал, получить чистый прямоугольный сигнал на выходе

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Простой таймер.

  • Схема простого таймера NE555, видео обзор от пользователя jakson .

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Схема таймера NE555, для получения более точных интервалов.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Простой ШИМ

  • Практическое применение в статье ШИМ для вентилятора

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Сумеречный выключатель.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Читайте так же:
Стабилизатор тока 220в 6квт

Управление устройством с помощью одной кнопки.

  • Вариант исполнения такой схемы находится в этом блоге.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Аналогичная схема управление одной кнопкой на микросхеме CD4013 (аналог 561TM2)

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Датчик (индикатор) влажности.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Контроль уровня воды.


Два датчика уровня жидкости могут служить для контроля за количеством воды в баке . Один датчик сообщает о малом количестве воды в баке, а второй о том , что бак полный. При небольшой доработке схемы выходные сигналы схемы можно подключить к более серьёзным нагрузкам :).

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

ON/OFF сенсор.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Схема для включения светодиодной подсветки от автономного питания, на 10- 30секунд.

Один вариант из применения, встраивается во входную дверь в районе замочной скважины.

Подсветка включается посредством нажатия кнопки на дверной ручке – в результате не возникнет проблем с открытием замка при отсутствии естественного либо искусственного освещения.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Кодовый замок на таймере NE555.

Подобной разработки кодового замка на таймере NE555, в интернете я пока не встречал, поэтому эта разработка посвящается всем любителям этой чудесной микросхемы.
Схему на микросхеме NE555 в виде кодового замка на дверь или сейф, нетрудно реализовать на этом таймере.
Еще я знаю, что 555 нормально работает при отрицательных температурах,(если предстоит эксплуатация на улице) и более широкий диапазон напряжения питания до 16V. Надежность микросхемы не подлежит сомнению.

И так привожу в пример схему, цифровой код в которой будет состоять из 4 цифр (технически схему можно реализовать и на одной кнопке, но это будет слишком банально, я думаю что 4 цифры для начала самый раз, наращивать количество цифр в коде этой схемы можно до бесконечности ,(одинаковыми частями по блочно, обвел на схеме U2).
В приведенной схеме все 4 таймера работают по одной схеме, имеются небольшие отличия в таймерах U1, U4. Схема U2 и U3 повторяются один в один.
Каждый таймер в этой схеме может быть настроен на своё рабочее время, на это задействована время задающая цепочка R1, R2, C1.
А также секретность кода можно увеличить подключив доп. коммутирующие диоды.( в качестве примера привел включение одного диода D1, большее не рисовал, так как думаю, что тогда схема будет восприниматься очень сложно).
Главное отличие этой схемы на таймерах 555, от подобных схем, наличие настройки рабочего времени каждого таймера, при простоте этой схемы, вероятность подбора кода посторонним лицом будет очень невелик.

Работа схемы;
— Нажимаем кнопку ноль, запускается таймер U1, его рабочее время настроено на удержание логической единицы (вывод 3) в течении 30 сек, после этого можно нажать кнопку 1.
— Нажимаем кнопку 1 таймер U2, его рабочее время настроено на 2 сек., в течении этого времени надо нажать кнопку 2 (иначе U2 удержание логической единицы (вывод 3) сбрасывается и нажатие кн. 2 не будет иметь смысла)
— Нажимаем кнопку 2, таймер U3 настроен на удержание логической единицы (вывод 3) в течении 25 сек, после этого можно нажать кнопку 3, но ……….. смотрим на коммутирующий диод D1, из за него кнопку 3 нет смысла быстро нажимать, пока не закончится 30 секундное рабочее время таймера U1,
— После нажатия кнопки 3, таймер U4 выдает логическую единицу (U4 вывод 3)на исполнительное устройство.
Еще остается добавить что, в действующем устройстве цифровой код будет расположен не по порядку номеров, а хаотично,
и любое нажатие других кнопок будет сбрасывать таймеры в 0.
Ну в общем пока всё, все варианты использования тут не описать, вижу что не все, я здесь в описании затронул …… в общем если есть идея, ее техническая реализация всегда найдётся.
Все настройки, рабочего времени микросхем U1…….U4 являются тестовыми, и описаны здесь для примера. 🙂
(в охранных системах для непрошеных гостей самое трудное, это индивидуальные решения, доказано временем )
Прикладываю архив со схемой в протеус, в нем работу схемы можно оценить наглядно.

Читайте так же:
Стабилизаторы напряжения постоянного тока п36

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Назначение восьми ног микросхемы.

1. Земля.

Вывод, который подключается к минусу питания и к общему проводу схемы.
2. Запуск.
Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, ) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.
3. Выход.

Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс.
4. Сброс.
При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и есть reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод рекомендуется подключить к плюсу питания, пока в нем нет необходимости.
5. Контроль.
Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.
6. Останов.
Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.
7. Разряд.
Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

8. Плюс питания.

Напряжение питания таймера может находиться в пределах 4,5-16 вольт.

Программа параметров и расчета NE555.rar 1,3Mb.

Работа схемы таймера NE555 в протеусе.

Обзор модуля генератора импульсов на NE555

Автор: Сергей · Опубликовано 08.06.2020 · Обновлено 08.04.2021

Сегодня расскажу о модуле генератора импульсов на микросхеме NE555 (YS-32), которая способна работать от 10 до 200 кГц. Данный модуль используется для намотки спидометра, ремонте и так далее.

Читайте так же:
Стабилизатор тока с низким падением напряжения
Технические параметры

► Микросхема: NE555;
► Форма генерируемых импульсов: прямоугольные импульсы;
► Рабочее напряжение: 5-15 В;
► Диапазоны частот: 1-50Гц, 50Гц — 1кГц, 1-10кГц, 10-200 кГц;
► Потребляемый ток: 100 мА;
► Выходной ток: 35 мА;
► Размеры: 31 х 22 х 17 мм;
► Вес: 7 г.

Обзор модуля NE555

Модуль основан на микросхеме NE555, которая была выпущена еще в 1971 году, компанией Signetics и которая на сегодняшний день остается популярной. Сам модуль имеет небольшие размеры, всего 31 на 17 мм. Частота выходного сигнала регулируется с помощью потенциометра, в определенном диапазоне, который задается с помощью перемычек: 1-50Гц, 50Гц — 1кГц, 1-10кГц и 10-200 кГц. Вторым потенциометром регулируется скважность. Для подключения используется трех контактный штыревой разъем, шагом 2,54 мм.

Назначение контактов:
► GND – Вывод питания, земля.
► OUT – Сигнальный вывод.
► VCC – Вывод питания, от 5 до 15 В.

Принципиальная схема:

Показания осциллограмм выходного сигнала NE555

Покажу показания выходного сигнала снятые с помощью осциллографа, потенциометр частоты и скважности выкрутил на минимум и на максимум.
1. Перемычка установлен на 1 Гц — 50 Гц, потенциометры на минимуме.

2. Перемычка установлен на 50 Гц — 1 кГц, потенциометры на минимуме.

3. Перемычка установлен на 1 кГц — 10 кГц, потенциометры на минимуме.

4. Перемычка установлен на 10к Гц — 200 кГц, потенциометры на минимуме.

5. Перемычка установлен на 1 Гц — 50 Гц, потенциометр частоты на максимуме, а потенциометр скважности выкручен максимально (до спада импульса).

6. Перемычка установлен на 50 Гц — 1 кГц, потенциометр частоты на максимуме, а потенциометр скважности выкручен максимально (до спада импульса).

7. Перемычка установлен на 1 кГц — 10 кГц, потенциометр частоты на максимуме, а потенциометр скважности выкручен максимально (до спада импульса).

8. Перемычка установлен на 10 кГц — 200 кГц, потенциометр частоты на максимуме, а потенциометр скважности выкручен максимально (до спада импульса).

Подключение модуля NE555 к Arduino

Необходимые детали:
Arduino UNO R3 x 1 шт.
Генератор импульсов на NE555 (от 1 Гц до 200 кГц ) x 1 шт.
Провода DuPont M-F, 20 см x 1 шт.

Подключение:
Для наглядности подключим модуль генератора импульсов NE555 к аналоговому выводу Arduino, принципиальная схема подключена показана ниже.

Программа:
Скетч не сложный, просто считываем показания с аналогово порта А0 и полученные данные передаем в последовательный порт.

Импульсный стабилизатор тока ne555

9zip.ru Инструкции Фазовый регулятор (диммер) на NE555

Микросхема D2 включена по схеме одновибратора с возможностью регулировать величину задержки в пределах длительности одной полуволны сетевого напряжения частоты 50 Гц. Времязадающие элементы R4, R5, PR1 и С3.


Запуск одновибратора осуществляется отрицательным сбросовым сигналом, формируемым в точке пересечения сетевым напряжением 0 вольт. Этот сигнал получаем из выпрямленного переменного напряжения сети на мостике D1 c делителя на резисторах R1, R2. Диод VD3 ограничивает максимальное значение сигнала с делителя уровенем питания микросхемы. Диод VD1 защищает цепи микросхемы от воздействия напряжений более 1/3Uпит.

Питание микросхемы осуществляется выпрямленным сетевым напряжением на диодном мостике D1. Предусмотрено два варианта питания микросхемы D2. По первому варианту, показанному на рисунке, напряжение на микросхеме снимается со стабилитрона VD2 на 5,6V, а баластным резистором является R3. Такое решение позволяет использовать в данной схеме таймеры любого из мировых производителей, а их сейчас, согласно «D.A.T.A. Book», около двух десятков. Часто это не клоны с одного фотошаблона, а достаточно оригинальные конструкции, отличающиеся, среди прочего, токами потребления. Если ориентироваться на отечественный аналог 555 таймера — КР1006ВИ1 или его копию AS555, производства рижской «Alfa», то можно применить второй вариант питания и не ставить VD2. Напряжение на таймере возрастёт до приблизительно 10V, но при всех колебаниях сети останется в допустимых границах 5..15V. Резистор R3 становится частью RC фильтра питания R3, C2.

Управление ИК эмиссионным диодом силового оптоприбора осуществляется напосредственно выходным ключевым каскадом D2. Ток диода для включения таких приборов достаточно велик и если ограничится управлением нагрузками до 100 kW, то он может быть до 100 mA. Для уменьшения мощности, необходимой для управления оптоприбором, здесь ток на ИК диод подаётся не непрерывно, а только коротким импульсом в момент включения. Для формирования такого импульса мощности выходного каскада вполне хватает.

В данной схеме импульс в ИК диод включается через RC цепочку R6, C4. при появлении на выходе (конт.3) микросхемы D2 отрицательного перепада напряжения. Источником питания при импульсных нагрузках в схеме служит накопительный конденсатор С2. От его положительной обкладки конденсатор С4 заряжается по цепи: ИК диод VS1, С4, резистор R6, «нижний» транзистор выходного ключа D2, общий вывод D2 (конт.1), отрицательная обкладка С2. Длительность этого процесса и, соответственно, инициализации оптоприбора, зависит от постоянной времени цепочки R6, C4. Разряд С4, для подготовки следующего запуска идёт через диод VD4, в обход VS1, при выключении «нижнего» и включении «верхнего» транзистора выходного ключа D2.
Для адаптации фазового регулятора и какого-то специфического оптоприбора можно порекомендовать варьировать значения R6 и С4, но не переходить границы в 200 mA тока в импульсе.

Читайте так же:
Ток холостого хода стабилизаторов напряжения

Внимание! Элементы данного устройства не имеют гальванической развязки от сети. Настроечные работы потенциально опасны. Используйте все необходимые меры защиты.

Хочешь почитать ещё про инструкции? Вот что наиболее популярно на этой неделе:
Самодельная акустическая система
Многофункциональный регулируемый светильник
Подключение дисплея от Siemens A65 в Bascom

Реле времени на 555 таймере делаем своими руками

  • Как работает микросхема 555
  • Устройство с функцией задержки включения
  • Как сделать реле с задержкой отключения
  • Где купить
  • Видео по теме

Микросхема серии 555 была разработана довольно давно, но до сих пор сохраняет свою актуальность. На базе чипа может быть собрано несколько десятков самых различных устройств с минимальным количеством дополнительных компонентов в схеме. Простота расчета номиналов компонентов обвески микросхемы также является важным её достоинством.

В данной статье речь пойдет о двух вариантах применения микросхемы в схеме реле времени с:

  • Задержкой включения;
  • Задержкой отключения.

В обоих случаях 555-ый чип будет функционировать как таймер.

Как работает микросхема 555

Перед тем, как перейти к примеру устройства реле, рассмотрим структуру микросхемы. Все дальнейшие описания будут делаться для микросхемы серии NE555 производства Texas Instruments.

Как видно из рисунка, основа — это RS-триггер с инверсным выходом, управляемый выходами с компараторов. Положительный вход верхнего компаратора называется THRESHOLD, отрицательный вход нижнего — TRIGGER. Другие входы компараторов подключены к делителю напряжения питания из трех резисторов по 5 кОм.

Как вы скорее всего знаете, RS-триггер может находиться в устойчивом состоянии (обладает эффектом памяти, объемом 1 бит) либо в логическом «0», либо в логической «1». Как он функционирует:

  • Приход положительного импульса на вход R (RESET) устанавливает выход в логическую «1» (именно «1», а не «0», так как триггер инверсный — об это говорит кружок на выходе триггера);
  • Приход положительного импульса на вход S (SET) устанавливает выход в логический «0».

Резисторы по 5 кОм в количестве 3-х штук делят напряжение питания на 3, что приводит к тому, что опорное напряжение верхнего компаратора (вход «–» компаратора, он же, вход CONTROL VOLTAGE микросхемы) составляет 2/3 Vcc. Опорное напряжение нижнего — 1/3 Vcc.

С учетом сказанного, можно составить таблицы состояний микросхемы относительно входов TRIGGER, THRESHOLD и выхода OUT. Обратите внимание, что выход OUT — это инвертированный сигнал с RS-триггера.

THRESHOLD 2/3 Vcc
TRIGGER 1/3 VccOUT остается без измененийOUT = лог «0»

С помощью такой функциональности микросхемы можно легко делать различные генераторы сигнала с частотой генерации, независимой от питающего напряжения.

В нашем случае, для создания реле времени применяется такая хитрость: входы TRIGGER и THRESHOLD объединяются вместе и к ним подается сигнал с RC-цепочки. Таблица состояний в таком случае будет выглядеть так:

OUT
THRESHOLD, TRIGGER 2/3 VccOUT = лог «0»

Схема включения NE555 для такого случая следующая:

После подачи питания конденсатор начинает заряжаться, что приводит к постепенному увеличению напряжения на конденсаторе с 0В и далее. В свою очередь, напряжение на входах TRIGGER и THRESHOLD будет наоборот, убывать, начиная с Vcc+. Как видно из таблицы состояний, на выходе OUT присутствует логический «0» после подачи питания Vcc+, а переключение выхода OUT в логическую «1» произойдет, когда на указанных входах TRIGGER и THRESHOLD напряжение опустится ниже 1/3 Vcc.

Важен тот факт, что время задержки реле, то есть промежуток времени между подачей питания и зарядкой конденсатора до момента переключения выхода OUT в логическую «1», можно рассчитать по очень простой формуле:

T = 1.1 * R * C
И как видите, это время не зависит от напряжения питания. Следовательно, при проектировании схемы реле времени можно не заботиться о стабильности питания, что значительно позволяет упростить схемотехнику.

Далее приведем рисунок варианта исполнения микросхемы в DIP-корпусе и покажем расположения выводов чипа:

Также стоит упомянуть, что кроме 555 серии производится серия 556 в корпусе с 14-ю выводами. Серия 556 содержит два таймера 555.

Читайте так же:
Стабилизатор напряжения регулятор тока

Устройство с функцией задержки включения

Перейдем непосредственно к реле времени. В этой статье мы разберем с одной стороны схему максимально простую, но с другой стороны не имеющую гальванической развязки.

Внимание! Сборка и наладка рассматриваемой схемы без гальванической развязки должна выполняться только специалистами, имеющими соответствующее образование и допуски.

Устройство является источником опасности, так как в нем присутствует опасное для жизни напряжение.
Такое устройство в своей конструкции имеет 15 элементов и делится на две части:

  1. Узел формирования питающего напряжения или блок питания;
  2. Узел с временным контроллером.

Блок питания работает по бестрансформаторному принципу. В его конструкцию входят компоненты R1, C1, VD1, VD2, C3 и VD3. Само напряжение питания 12 В формируется на стабилитроне VD3 и сглаживается конденсатором C3.

Во вторую часть схемы включены интегральный таймер с обвеской. Роль конденсатора C4 и резистора R2 мы описали выше, и теперь по указанной ранее формуле мы можем вычислить значение времени задержки реле:

T = 1.1 * R2 * C4 = 1.1 * 680000 * 0.0001 = 75 секунд ≈ 1.5 минуты Изменив номиналы R2-C4, вы можете самостоятельно определить необходимое вам время задержки и своими руками переделать схему на любой временной интервал.

Принцип работы схемы следующий. После включения устройства в сеть и появления напряжения питания на стабилитроне VD3, а, следовательно, и на микросхеме NE555, конденсатор начинает заряжаться до тех пор, пока напряжение на входах 2 и 6 чипа NE555 не опустится ниже 1/3 от питающего, то есть, примерно до 4 В. После наступления этого события на выходе OUT появится управляющее напряжение, которое запустит (включит) реле K1. Реле, в свою очередь, замкнет нагрузку HL1.

Диод VD4 ускоряет разрядку конденсатора C4 после отключения питания для того, чтобы после быстрого повторного включения в сеть устройства время сработки не сократилось. Диод VD5 гасит индуктивный выброс от K1, чем защищает схему. C2 служит для фильтрации помех по питанию NE555.

Если правильно подобраны детали и без ошибок выполнен монтаж элементов, то устройство в проведении настройки не нуждается.

При испытании схемы, чтобы не выжидать полторы минуты, необходимо сопротивление R1 снизить до значения 68–100 кОм.

Вы, наверное, обратили внимание, что в схеме нет транзистора, который бы включал реле K1. Сделано это не из экономии, а по причине достаточной надежности выхода 3 (OUT) микросхемы DD1. Микросхема NE555 выдерживает на выходе OUT максимальную нагрузку до ±225 мА.

Такая схема идеально подходит для контроля времени работы вентиляционных приборов, установленных в санузлах и других подсобных помещениях. За счет ее наличия вентиляторы включаются только при условии присутствия в помещении в течение длительного времени. Такой режим значительно снижает расход электрической энергии, и продлевает срок службы вентиляторов за счет меньшего износа трущихся деталей.

Как сделать реле с задержкой отключения

Приведенную схему, благодаря особенностям NE555, можно легко переделать в таймер задержки отключения. Для этого необходимо поменять местами C4 и R2-VD4. В таком случае K1 замкнет нагрузку HL1 сразу после включения устройства. Отключение нагрузки произойдет после того, как напряжение на конденсаторе C4 увеличится до 2/3 от напряжения питания, то есть примерно до 8 В.

Недостатком такой модификации является тот факт, что после отключения нагрузки схема будет оставаться под воздействием опасного напряжения. Устранить такой недостаток можно включив контакт реле в цепь подачи питания на таймер параллельно с кнопкой включения (именно кнопкой, а не выключателем!).

Схема такого устройства с учетом всех доработок приведена ниже:

Внимание! Для того, чтобы опасное напряжение в действительности снималось со схемы контактом реле, необходимо, чтобы ФАЗА была подключена именно так, как показано на схеме.

Обратите внимание, что таймер 555 применен и описан на нашем сайте еще и в другой статье, в которой рассмотрена схема реле времени с задержкой выключения 220В. Приведенная там схема более надежна, содержит гальваническую развязку и позволяет изменять интервал выдержки времени с помощью регулятора.

Если при изготовлении изделия вам потребуется чертеж печатной платы, напишите об этом в комментариях.

Где купить

Приобрести готовый таймер или реле времени можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых приборов есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»:

Видео по теме

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector