Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный стабилизатор тока или драйвер схема

Применение операционных усилителей. Часть 1. Регулирование тока нагрузки на примере светодиодного драйвера

Как известно, — для питания светодиодов требуется стабильный ток. Устройство, способное питать светодиоды стабильным током, называется драйвером светодиодов. Эта статья посвящена изготовлению такого драйвера с использованием операционного усилителя.

Итак, главная идея заключается в том, чтобы стабилизировать падение напряжения на резисторе известного номинала (в нашем случае — R3), включенном в цепь последовательно с нагрузкой (светодиодом). Поскольку резистор включен последовательно со светодиодом, то через них протекает одинаковый ток. Если этот резистор подобран таким образом, что он практически не нагревается, то и сопротивление его будет неизменным. Таким образом, стабилизировав падение напряжения на нём, мы стабилизируем и ток через него и, соответственно ток через светодиод.

Причём же здесь операционный усилитель? Да при том, что одним из его замечательных свойств является то, что ОУ стремится к такому состоянию, когда разность напряжений на его входах равна нулю. И делает он это путём изменения своего выходного напряжения. Если разность U1-U2 положительна — выходное напряжение будет возрастать, а если отрицательна — уменьшаться.

Представим, что наша схема находится в некоем равновесном состоянии, когда напряжение на выходе ОУ равно Uвых. При этом через нагрузку и резистор протекает ток Iн. Если по каким либо причинам ток в цепи возрастёт (например, если под действием нагрева уменьшится сопротивление светодиода), то это вызовет увеличение падения напряжения на резисторе R3 и, соответственно, увеличение напряжения на инвертирующем входе ОУ. Между входами ОУ появится отрицательная разность напряжений (ошибка), стремясь скомпенсировать которую, операционник будет уменьшать выходное напряжение. Он будет делать это до тех пор, пока напряжения на его входах не станут равными, т.е. пока падение напряжения на резисторе R3 не станет равным напряжению на неинвертирующем входе ОУ.

Таким образом, вся задача свелась к тому, чтобы стабилизировать напряжение на неинверирующем входе ОУ. Если вся схема питается стабильным напряжением Uп, то для этого достаточно простого делителя (как на схеме 1). Раз делитель подключен к стабильному напряжению, то и выход делителя тоже будет стабильным.

Расчёты: Для расчётов выберем реальный пример: пусть мы хотим запитать два сверхъярких светодиода подсветки сотового телефона Nokia от напряжения Uп=12В (отличный фонарик в машину). Нам нужно получить ток через каждый светодиод 20 мА и при этом у нас имеется выковырянный с материнской платы сдвоенный операционный усилитель LM833. При таком токе наши светодиоды светят гораздо ярче, чем в телефоне, но сгорать и не собираются, значительный нагрев начинается где-то ближе к 30 мА. Расчёт будем вести для одного канала операционника, т.к. для второго он абсолютно аналогичен.

напряжение на инвертирующем входе: U2=Iн*R3

из условия равенства напряжений в состоянии равновесия:

Как выбирать номиналы элементов?

Во-первых, выражение для U1 справедливо только в том случае, если входной ток операционного усилителя = 0. То есть для идеального операционного усилителя. Чтобы можно было не учитывать входной ток реального ОУ, ток через делитель должен быть по крайней мере раз в 100 больше, чем входной ток ОУ. Величину входного тока можно посмотреть в даташите, обычно для современных ОУ она может составлять от десятков пикоампер до сотен наноампер (для нашего случая input bias current max=1 мкА). То есть ток через делитель должен быть по меньшей мере 100..200 мкА.

Во-вторых, с одной стороны — чем больше R3 — тем более наша схема чувствительна к изменению тока, но с другой стороны — увеличение R3 снижает КПД схемы, поскольку резистор рассеивает мощность, пропорциональную сопротивлению. Будем исходить из того, что мы не хотим падения напряжения на резисторе более 1В.

(Вообще же, если хотят побороться за КПД, то R3 выбирают как можно меньше. Предел уменьшения R3 ограничен таким показателем операционника, как напряжение смещения нуля. Для нормальной работы ОУ, R3 выбирают таким, чтобы минимальное падение напряжения на нём было на пару порядков больше напряжения смещения нуля. Подробнее об этом показателе и его влиянии на работу ОУ читайте в статье про дифференциальный усилитель.)

Итак, пусть R1=47кОм, тогда с учётом того, что U1=U2=1В, из выражения для U1 получим R2=R1/(Uп/U1-1)=4,272 -> из стандартного ряда выбираем резистор на 4,3 кОм. Из выражения для U2 находим R3=U2/Iн=50 -> выбираем резистор на 47 Ом. Проверим ток через делитель: Iд=Uп/(R1+R2)=234 мкА, что вполне нас устраивает. Мощность, рассеиваемая на R3: P=Iн 2 *R3=18,8 мВт, что тоже вполне приемлемо. Для сравнения, — самые обычные резисторы МЛТ-0,125 рассчитаны на 125 мВт.

Как уже было отмечено, описанная выше схема рассчитана на стабильное питание Uп. Что же делать, если питание НЕ стабильное. Самым простым решением является замена сопротивления R2 делителя на стабилитрон. Что важно учитывать в этом случае?

Читайте так же:
Экономичный стабилизатор напряжения с малым потреблением тока

Во-первых, важно чтобы стабилитрон мог работать во всем диапазоне напряжения питания. Если ток через R1D1 будет слишком маленьким — напряжение на стабилитроне будет значительно выше напряжения стабилизации, соответственно, выходное напряжение будет значительно выше требуемого и светодиод может сгореть. Итак, нужно, чтобы при Uп min ток через R1D1 был больше или равен Iст min (минимальный ток стабилизации узнаём из даташита на стабилитрон).

Во-вторых, при максимальном напряжении питания ток через стабилитрон не должен быть выше Iст max (наш стабилитрон не должен сгореть). То есть

И, наконец, в-третьих, напряжение на реальном стабилитроне не точно равно Uст, — оно, в зависимости от тока, меняется от Uст min до Uст max. Соответственно, падение на резисторе R3 тоже изменяется от Uст min до Uст max. Это так же следует учитывать, поскольку чем больше ΔUст — тем больше ошибка регулирования тока, в зависимости от напряжения питания.

Ну ладно, с небольшими токами разобрались, а что делать, если нам нужен ток через светодиод не 20, а 500 мА, что превышает возможности операционника? Тут тоже всё достаточно просто — выход можно умощнить с помощью обычного биполярного или полевого транзистора, все расчёты при этом остаются без изменений. Единственное очевидное условие — транзистор должен выдерживать требуемый ток и максимальное напряжение питания.

Ну вот, пожалуй и всё. Удачи! И ни в коем случае не выкидывайте старый радиохлам — у нас впереди ещё много прикольных штуковин.

Импульсный стабилизатор тока или драйвер схема

Линейные и импульсные: драйверы мощных светодиодов от Maxim

Драйверы питания светодиодов:

Рис. 1. Зависимости прямых падений напряжения от тока для светодиодов разных цветов

Еще одна причина, заставляющая питать светодиоды именно стабилизированным током — это зависимость светового потока от протекающего через них тока. Эту зависимость используют при необходимости регулировки яркости светодиодного светильника или для получения различных цветовых оттенков свечения в полноцветных RGBW. Однако в большинстве случаев требуется именно стабильное равномерное свечение. На рисунке 2 приведены зависимости светового потока для светодиодов разных цветов на примере серии MC-E компании Cree. Из рисунка 2 видно, что для изменения светового потока светодиодов серии MC-E от 20 до 100 процентов ток светодиода должен изменяться от 100 до 350 мА. Диапазон изменения тока обычно регулируется с помощью светодиодных драйверов.

Рис. 2. Зависимости светового потока от прямого тока через светодиоды разных цветов

Линейные драйверы светодиодов

Компания Maxim выпускает линейные и импульсные драйверы светодиодов. Выходной каскад линейных драйверов представляет собой генератор тока на полевом транзисторе с p-каналом. Структура и типовая схема включения линейного драйвера показана на рис. 3.

Рис. 3. Типовая схема включения и структура линейного драйвера

Ток через последовательно включенные светодиоды задается резистором RSENSE (датчиком тока). Падение напряжения на этом резисторе определяет выходное напряжение дифференциального усилителя DIFF AMP, поступающее на неинвертирующий вход регулирующего усилителя IREG. Регулирующий ОУ сравнивает напряжение ошибки с опорным, формируя на своем выходе потенциал для управления полевым транзистором с p-каналом, работающим в линейном режиме, поэтому рассматриваемые драйверы проигрывают в эффективности импульсным. Однако линейные драйверы обладают простотой применения, низкой ценой и минимальными электромагнитными излучениями (ЭМИ).

Таблица 1. Линейные драйверы мощных светодиодов (Linear HB LED drivers)

Наименование

Области применения

Uвх, В

Iвых.макс., А

ШИМ-димминг (PWM-Dimming)

Автомобильные приложения

Общее
применение

Большинство из них имеют диапазон входных напряжений 6,5. 40 В. Максимальные значения выходных токов составляют 0,1. 0,35 А. Каждая микросхема из таблицы 1 допускает импульсное регулирование выходного тока (ШИМ-димминг). Управлять яркостью светодиодов можно с помощью регулировки скважности импульсов, формируемых таймером ICM7555. Рекомендуемая для этого производителем схема приведена на рис. 4. Параметры внешних компонентов для ШИМ-последовательности импульсов, формируемой таймером, приведены в соответствующей документации для ICM7555.

Рис. 4. Управление яркостью светодиодов с помощью таймера ICM7555

На рис.5 приведена рекомендуемая производителем схема для защиты мощных светодиодов от перегрева с помощью термистора NTC. Ток ограничения через светодиоды рассчитывается по формуле: ILED = [VSENSE — [R2/(R2+ R1)] V5]/R1, где V5- выходное напряжение 5В от встроенного стабилизатора напряжения. Такая несложная доработка схемы позволит исключить возможность выхода из строя дорогих светодиодов из-за недопустимо высокой температуры корпуса, ведь даже небольшое превышение максимально допустимой температуры резко сокращает их срок службы.

Рис. 5. Защита светодиодов от перегрева с помощью термистора

На рис. 6 показан способ увеличения выходного тока драйвера с помощью внешнего биполярного транзистора. Следует отметить, что в этом случае светодиоды подключаются между входом источника питания и коллектором биполярного транзистора, а это не всегда удобно.

Читайте так же:
Управляемый импульсный стабилизатор тока

Рис. 6. Увеличение тока драйвера с помощью внешнего биполярного транзистора

Схема для увеличения выходного тока, показанная на рис. 7, свободна от этого недостатка. Катод нижнего по схеме светодиода подключается непосредственно к общему проводу, что в большинстве случаев гораздо предпочтительнее предыдущего варианта, показанного на рис. 6, когда на катоде нижнего светодиода всегда присутствует ненулевой потенциал. Большинство микросхем линейных драйверов из таблицы 1 допускают рассмотренные варианты увеличения выходного тока. В качестве примера на рисунках 6 и 7 приведена микросхема MAX16803.

Рис. 7. Параллельное включение двух драйверов для увеличения выходного тока

Импульсные драйверы светодиодов

Для портативных осветительных приборов очень важен высокий КПД преобразования светодиодных драйверов, поэтому в их схемах используются импульсные DC/DC-преобразователи с разными топологиями и схемными решениями, обеспечивающими стабилизацию выходного тока. Высокий КПД преобразования импульсных драйверов светодиодов позволяет увеличить время работы автономного источника питания.

Таблица 2. Импульсные драйверы мощных светодиодов (Switch-mode HB LED drivers)

Наименова- ние

Области применения

Топология

Uвх, В

Iвых.макс, А

Частота

ШИМ-димминг (PWM-Dimming)

Автомобильные приложения

Общее
применение

Импульсные драйверы имеют широкие диапазоны входных напряжений. Например, у микросхемы MAX16833 входной диапазон напряжений от 5 до 65 В, у MAX16822 — от 6,5 до 65 В. Разработчику предлагаются на выбор драйверы с очень широким диапазоном частоты преобразования. Некоторые микросхемы позволяют задавать частоту преобразования от 20 кГц до 2 МГц (эти параметры приведены в таблице 2). Контроллеры светодиодных драйверов MAX16801 и MAX16802 позволяют разработать DC/DC-преобразователь с выходным стабилизированным током до 10 А. Драйверы MAX16807, MAX16809, MAX16838 и MAX16814 позволяют получить диапазон регулировки выходного тока с отношением 1:5000. Большинство импульсных светодиодных драйверов позволяют выбрать наиболее оптимальную топологию схемы для достижения максимальной эффективности работы схемы преобразования. Например, MAX16821, MAX16833 и MAX16834 дают возможности выбора топологии преобразователя из четырех возможных вариантов: boost, buck, buck-boost или SEPIC. Для облегчения правильного выбора светодиодного драйвера производитель приводит рекомендуемые области применения для каждого наименования. Миниатюрные корпуса и требуемые компактные внешние компоненты позволяют создать схему с малыми габаритами и широкими функциональными возможностями. В документации каждого драйвера приводятся рекомендуемые схемы включения для конкретного приложения, что существенно облегчает проектирование.

Несколько слов о способах регулировки яркости светодиодов с помощью импульсных драйверов. Наиболее популярны аналоговая и ШИМ-регулировка. Оба метода имеют свои преимущества и недостатки. Управление интенсивностью свечения с помощью ШИМ-регулирования позволяет значительно ослабить отклонение цветового оттенка светодиода, но требует дополнительного формирователя последовательности импульсов ШИМ. Регулировка яркости аналоговым методом основана на более простой схеме, но он может оказаться недопустимым при необходимости поддержания постоянной цветовой температуры светодиодов.

Аналоговая регулировка изменяет величину постоянного тока светодиода. Управление силой света светодиода обычно производится регулировкой переменного резистора или переменным уровнем управляющего напряжения, подаваемым на специально предназначенный для этого вход. Метод регулировки светового потока светодиода с помощью ШИМ заключается в периодическом включении и выключении тока через светодиод на короткие промежутки времени. Частота ШИМ обычно выбирается не менее 200 Гц для полного исключения эффекта мерцания и создания комфортного восприятия светового потока человеком. Интенсивность свечения светодиода при управлении с помощью ШИМ пропорциональна рабочему циклу импульсной последовательности.

Многие современные микросхемы импульсных драйверов светодиодов имеют специальный вход PWM DIM, на который можно подавать сигналы ШИМ разных частот и амплитуд, что существенно упрощает сопряжение драйвера со схемами внешней логики. Дополнительно для управления светодиодным драйвером могут использоваться вход разрешения выхода и другие логические функции.

Подарки и советы

Множество идей оригинальных и приятных подарков по любому событию и на все случаи жизни

Питание светодиода от lm317. Простой драйвер постоянного тока на LM317 и PT4115 для подключения мощных светодиодов

Чтобы правильно подключить светодиоды и обеспечить им долгую и продуктивную работу требуется источник стабильного тока или, как его называют, драйвер для светодиодов . Как выбрать готовый или собрать самому простой драйвер для подключения светодиодов – в этой статье.

Основной параметр при подключении светодиодов – это не напряжение, а именно величина тока , протекающего через него. Известно не мало случаев, когда после включения светодиодов, особенно “китайских”, ток через них медленно продолжает увеличиваться (по мере нагрева) и через некоторое время может достигать значений, серьезно превышающих номинальные. Все это приводит к перегреву кристалла, скорой деградации, морганию в предсмертной конвульсии и неминуемого выхода из строя.

Для обеспечения одинакового тока, светодиоды к стабилизатору тока подключаются последовательными группами.

Линейный драйвер на LM317

Описание и Характеристики

По-сути, LM317 представляет собой стабилизатор напряжения , который можно включить и как стабилизатор тока . Схема драйвера на этой микросхеме проста, как угол дома: вам потребуется сама микросхема и. один опорный резистор – и все! Все детали можно спаять навесным монтажом, прикрутив микросхему прямо к радиатору. Благодаря простоте и доступности при стоимости микросхемы около 0,2 у.е. , эта микросхема многие годы пользуется огромной популярностью среди радиолюбителей. Один из аналогов микросхемы – популярная отечественная «КРЕН-ка» КР142ЕН12.

Читайте так же:
Схемы стабилизаторов напряжения с защитой по току

В зависимости от исполнения LM317 может иметь добавочный индекс, характеризующий корпус микросхемы. Наиболее распространенный варинат – LM317T в корпусе TO-220 под винт для крепления непосредственно к радиатору охлаждения. LM317D2T в корпусе D 2 PAK рассчитана для монтажа на плате при небольшой мощности нагрузки.

Микросхема линейного стабилизатора LM317 / LM317T

Принцип регулирования напряжения/тока линейного стабилизатора состоит в том, что стабилизатор изменяет сопротивление p-n перехода выходного мощного транзистора (по сути, последовательного резистора в цепи) и тем самым адаптивно отсекает “лишнее” напряжение или гасит на себе “лишний” ток. Благодаря этому к питающему напряжению не домешиваются какие-либо высокочастотные помехи, поскольку их нет в принципе. Однако, у линейных стабилизаторов есть и серьезный недостаток. Как известно, при прохождении тока через любой резистор, на нем рассеивается мощность в виде тепла. Поэтому у линейного стабилизатора на LM317 склонность к сильному нагреву и, как следствие, достаточно низкий КПД .

Схемы и примеры включения

Схемы и примеры включения стабилизатора тока на LM317

Схема подключения LM317 для стабилизатора тока предельна проста – просто подключить опорный резистор заданного номинала между ножками выхода и регуляторным входом. Значения сопротивления и мощности опорного резистора можно расчитать по упрощеной формуле:

R = 1,25 / I out P = 1,25 ⋅ I out

Полученные значения округляем до ближайшего значения номиналов сопротивления и до ближайшего бо́льшего значения мощности, например для подключения полуваттных SMD 5730 получаем резистор на 8,2 Ом, мощностью 0,25 Вт, а для светодиодов на 1 Вт (300 мА), соответственно – 4,3 Ом и 0,5 Вт. Может оказаться, что резисторов требуемого номинала нет в наличии, тогда можно скомбинировать составной резистор из нескольких одинаковых, соединив из параллельно. В таком случае суммарное сопротивление такого составного резистора будет равно сопротивлению каждого резистора поделенного на их кол-во, а мощность будет равно мощности каждого резистора помноженного на их кол-во. Для простоты расчетов в Сети есть достаточно много он-лайн калькуляторов, например, такой .

Для работы стабилизатора тока на LM317 происходит падение напряжения не менее 3 В – это надо учитывать при подборе входного напряжения и количества последовательно соединенных светодиодов. Например, рабочее напряжение для SMD 5730 – 3,3…3,4 В. Следовательно, если подключать по 3 светодиода в группе, то входное напряжение должно быть от 13 В (рабочее напряжение исправной бортовой сети автомобиля – 14 В).

При всей свое простоте линейный стабилизатор тока на LM317 отличается низким КПД и потребностью в дополнительным охлаждением.

Импульсный драйвер на PT4115

Описание и Характеристики

Стабилизатор тока на базе PT4115 относится к “ключевым” или импульсным устройствам, т.е. регулировка величины тока через подключенную нагрузку осуществляется не за счет ограничения тока на полупроводниках, как это делается в линейных стабилизаторах LM317, а благодаря высокочастотному открытию/закрытию выходного ключа.

В импульносном стабилизаторе PT4115 постоянный ток преобразуется в импульсный с высокой частотой, а затем снова сглаживается до постоянного. Вот как раз, в момент формирования импульсов, и происходит регулировка величины тока за счет уменьшения или увеличения длительности самого импульса или пауз между ними (скважности). Поскольку импульсный регулятор ничего не ограничивает, а просто замыкает/размыкает цепь, то падения мощности не происходит, а значит импульсный регулятор мало греется и имеет высокий КПД (до 97%!). Поэтому, импульсный драйвер может иметь очень маленькие размеры и не требует громоздкого охлаждения.

Для работы стабилизатора тока на PT4115 требуется минимум деталей. Кроме того, PT4115 может работать как диммер : для этого подается на специальный вход постоянное напряжение в диапазоне 0,3…2,5 В или сигнал ШИМ.

Схемы и примеры включения

Схемы и примеры включения стабилизатора тока на PT4115

Схема источника стабильного тока с использованием PT4115 стандартна и использует минимум обвязки. Кроме самой микросхемы потребуется сглаживающий конденсатор, задающий низкоомный резистор (скорее всего составной), диод Шоттки да катушка индуктивности (дроссель). При подключении к источнику переменного напряжения потребуется еще диодный мост. Все детали достаточно миниатюрны и позволяю собрать плату размером с пять копеек.

Для нормальной работы стабилизатора наличие конденсатора (лучше танталовый) в цепи питания обязательно , иначе при включении микросхема неминуемо выйдет из строя. Конденсатор не просто сглаживает пульсации питания, его основная задача – компенсация тока самоиндукции , возникающего в дросселе при закрытии ключа. Без конденсатора ток самоиндукции через диод Шоттки вызовет пробой микросхемы.

Параметры опорного резистора рассчитываем по упрощенной формуле:

Читайте так же:
Ограничение выходного тока стабилизатора напряжения

R = 0,1 / I out

Для одноваттных светодиодов (300мА) получаем резистор на 0,33 Ом. Для получения такого резистора можно “бутербродом” спаять параллельно 3 SMD резистора на 1 Ом.

Идуктивность дросселя определяется в зависимочсти от тока нагрузки по таблице:

Всех Вам благ, и ровных дорог =)

Зачастую нуждается в дополнительном, так сказать, обеспечении, например, для мощных светодиодов необходим драйвер. Его можно собрать самому.

Хочу представить сегодня на вас суд простейший драйвер для 0.5-5Вт-х светодиодов на базе микросхемы LM317.

Как известно, для питания мощных светодиодов нужен стабилизатор тока (или, как говорят, светодиод питается током, а не напряжением), иначе светодиод прослужит не очень долго и сгорит. Для этих целей служит LED-драйвер, предназначенный для стабилизации тока и других функций (регулировка яркости и т.п.). Существуют специализированные микросхемы, да и в интернете полно схем драйверов.

Однако можно собрать простейший LED драйвер на популярной микросхеме LM317.

Эта микросхема универсальна, на ней можно строить как всевозможные линейные стабилизаторы напряжений, так и ограничители тока, зарядные устройства… Но остановимся на ограничителе тока. Микросхема ограничивает ток, а напряжение диод берет столько, сколько ему нужно. Схема очень проста, состоит всего из двух деталей: самой микросхемы и задающего ток резистора.


Или вот такой более понятный рисунок.

Минимальное напряжение должно быть минимум на 2-4В больше чем напряжение питания кристалла светодиода. Схема позволяет ограничивать ток от 10мА до 1,5А с максимальным входным напряжением 35В. При большом перепаде напряжений и(или) больших токах микросхему нужно посадить на радиатор. Если же требуются большие входные напряжения или ток, или нужно уменьшить потери, или тепловыделение то уже стоит использовать импульсный драйвер.

Резистор рассчитывается по следующей формуле:
R1=1.25В/Iout, где ток взят в Амперах, а сопротивление в Омах.
Например, имеем светодиод на ток 700 мА, R=1.25/0.7A=1.785 или 1.8 Ом.


Небольшая рассчитанная таблица.

Учтите, что максимальный ток для LM317 составляет полтора Ампера. Также не забывайте использовать радиатор для нее.
Конечно сама схема имеет низкий КПД, но на это можно не обращать внимание.

От себя добавлю, что имея в руках БП (блок питания) от компьютера допустим и пару-тройку таких микросхем да резисторов, можно собрать неплохое светило на тех же Cree или Semileds. На одну микросхему можно подцепить до 10 диодов.

На данный момент собран мною по такой схеме драйвер для фонаря на трех Cree XM-L t6 в котором источником питания служит четыре аккумулятора US18650GR (3,7v). Ток на диодах 1250мА. Это конечно меньше родного драйвера (там аж 3А было), но все равно отлично светит.
Также замечу, что у БП от ПК есть две линии +12 и -12, то есть можно взять 24в. А это уже при сопротивлении 1,8 Ом можно подключить 6 шт. диодов на одну линию. То есть нужно 4 микросхемы. Но есть одно но: на линии -12в ток всего 0,3А, то есть не пойдет (это я только что глянул на один из своих БП).

Импульсный стабилизатор тока или драйвер схема

Предлагаю простые способы и схемы изготовления драйверов для LED.
Схемы просты в повторении.

У Вас задача включить одиночный LED или группу LED, тогда вам нужен драйвер – стабилизатор тока. Как его сделать?
— Читайте на следующих страницах.
Если десятки и сотни LED дешевле общий стабилизатор напряжения.
Диоды объединить группами и подключать к шинам питания через балластные сопротивления.
Как строить мощный стабилизатор напряжения?

Решений и здесь много.
Можно применить понижающий трансформатор, можно «без трансформаторную» схему.
Можно электронный трансформатор.
Особенности и как его сделать вы найдете на этом сайте:
http://www.ntkexpert.at.ua/forum/29-119-1

Проще и безопасней сейчас использовать трансформатор.
(О выпрямителях и стабилизаторах разговор далее.)

Например, надежный ТПП.
Чтобы Вы не искали справочники и в справочниках схемы трансформаторов,

Подскажу, где взять описание:
ТПП есть в Справочнике радиолюбителя:
Терещук Р. М., Терещук К. М., Седов С. А. Полупроводниковые приемно-усилительные устройства: Справочник радиолюбителя. — К.: Наукова думка, 1981. — С. 138-143.
Я приведу табличку из этого справочника — трансформаторы мощностью от 14 до 90 Ватт.

Допустим, у нас задача подсветка с помощью 700 LED мощностью 0.06W, надписей или рекламного щита установленного на улице.
Мощность трансформатора при 100% КПД всей схемы должна быть 42W. Такого КПД не бывает, поэтому, берем более мощный ТПП «с запасом».
В Запас учитываем и возможность расширения схемы.
Короче, покупайте «на вырост», если у Вас не серийный образец драйвера.
Останавливаемся на 51 W из серии

Какой выбрать?

Если вы будете строить систему с подачей напряжения на каждый светодиод ,
то подойдут ТПП с малыми напряжениями на вторичных обмотках.
Но! Обратите внимание!
Токи в подводах будут большие, следовательно , нужны «толстые провода»
А это увеличенные затраты на проводники и больше потерь в балластных сопротивлениях.
По современным стандартам на улице напряжение не более 24 вольта. Ссылку на стандарт найдете сами?
Прикинем, сколько диодов включать в последовательную цепочку:
LED мощностью 0.06 ватта диаметром 5 мм. Падение напряжения на 1 LED, согласно паспорта, 3.2 — 3.4 вольта ток -18 -20 мА.
Считаем:
N = 24 / 3.4 равно «чуть более» 7 штук. Принимаем 7 штук. А излишек напряжения гасим балластным сопротивлением. Сортируем все диоды на группы по 7 штук так, чтобы в группе все диоды имели одинаковое напряжение свечения. Если это не делать, то одни диоды будут ярче гореть другие даже не включаться.
Гашение производим «по месту» на каждой цепочке меряем ток.

Читайте так же:
Схемы высоковольтных стабилизаторов тока

Потому, что разброс параметров LED.
Если ток в цепочке более 20 мА, то подбираем сопротивление.
Все просто!
Для наглядности
цепочка из 4 LED включена за Драйвером (контроллером) регулирующим ток в цепочке. В место контроллера подбираем резистор.
(Напряжение у нас идет со стабилизатора напряжения)

Берем для нашей задачки ТПП 270 или 271.

Как коммутировать обмотки? Надеюсь, Вы знаете.

Мы коммутируем выходные обмотки трансформатора так , чтобы было две — три или четыре линии питания светодиодов.

Простой стабилизатор тока на LM317

Приветствуем Вас уважаемый посетитель данной Интернет странички. Хотим обратить Ваше внимание, что существует множество схем и вариантов изготовления светодиодного драйвера, посредством простого стабилизатора тока на LM317. Наиболее трудоёмкие и материально затратные, представляют собой дополнительные схематические решения, позволяющие при критических перепадах напряжения и силы тока, сохранить наиболее дорогостоящие электронные компоненты.

Схема и принцип работы стабилизатора до 1.5А

Чтобы изготовить стабилизатор тока на LM317 воспользуемся следующей схемой.
Минимальное сопротивление резистора между управляющим электродом и выходным соответствует значению в 1 Ом, а максимальное значение равно 120 Ом. Сопротивление резистора можно подобрать опытным путем, или рассчитать по формуле.

Мощности резистора при рассеивании выделенного тепла, должно хватать, не только на рассеивание, а также учитывать возможность его перегрева, поэтому используется значение мощности с хорошим запасом. Чтобы её вычислить, необходимо использовать следующую формулу:

Как видно из формулы, мощность равна, квадрату силы тока умноженному на сопротивление резистора. Для выпрямления, наиболее эффективным решением будет применение стандартного диодного моста. На выходе диодного моста, устанавливают конденсатор с большой ёмкостью. При регулировке силы тока на LM317 LM317 используется линейный принцип работы. В связи с этим возможен их сильный нагрев, вследствие их низкого коэффициента полезного действия. Поэтому система охлаждения должна быть продуманной и эффективной, то есть иметь радиатор, который сможет хорошо охлаждать электронные компоненты. Если во время отслеживания температуры нагрева, была зарегистрирована низкая температура, в этом случае можно использовать менее мощную систему охлаждения.

Мы не советуем заменять постоянный резистор на переменный, так как рассеиваемая мощность переменного резистора мала и он выйдет из строя.

Стабилизатор тока до 10А

Ток стабилизации можно повысить до 10 Ампер, если будут добавлены в схему транзистор с маркировкой KT825A и сопротивление со значением 12 Ом. Такое распределение электронных компонентов используется радиолюбителями, у которых нет в наличии LM338 или LM350. Схема при силе тока в 3A собирается на основе транзистора КТ818. Нагрузочные амперы в любой из схем, рассчитываются тождественно.

Советы

Если у радиолюбителя появилось огромное желание, сделать драйвер, но в наличии нет нужного блока питания, то можно воспользоваться альтернативными возможностями.

Можно использовать вариант последовательного или параллельного подключения резисторов.

Если светодиодам требуется сила тока равная одному амперу, то при расчёте получим сопротивление равное 1,25 Oм. Подобрать резистор с таким значением Вы не сможете, потому что их не производят, поэтому необходимо взять первый ближний, с чуть большим сопротивлением.

Предложить знакомому радиолюбителю поменять подходящий по параметрам блок питания, на нужную ему радиодеталь или электронную схему. На питание собранной схемы подключить батарейку Крону или аналогичную по параметрам на 9V. Если Кроны нет, последовательно соединить 6 батарей любого размера по 1,5 V и подключить их к схеме.

Настоятельно советуем Вам, не использовать LM317 на пределе допустимых норм. Производимые в Китае электронные элементы, имеют малый запас прочности. Безусловно, тут имеется защита от короткого замыкания или от перегрева, но вот успешно она срабатывает, не во всех критических режимах и ситуациях. При подобных ситуациях, могут сгореть кроме LM317, другие электронные компоненты, а это вовсе не желательно.

Главные параметры LM317: Входное напряжение до 40 В, нагрузка до 1,5А; максимальная температура рабочая +125°С, защита от короткого замыкания.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector