Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный стабилизатор напряжения постоянного тока

Импульсный стабилизатор напряжения постоянного тока

Основные определения, термины
и понятия по военно-технической подготовке

  • Военно-техническая подготовка
  • Тактитка зенитных ракетных войск
  • Боевое применение зенитного ракетного комплекса

1.8. Стабилизаторы

Стабилизатор напряжения — электромеханическое или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.

1.8.1. Стабилизатор постоянного тока.

Линейный стабилизатор

Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади. Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.

В зависимости от расположения элемента с изменяемым сопротивлением:

Последовательный : регулирующий элемент включен последовательно с нагрузкой.

Параллельный : регулирующий элемент включен параллельно нагрузке.

В зависимости от способа стабилизации:

Параметрический : в таком стабилизаторе используется участок ВАХ прибора, имеющий большую крутизну.

Компенсационный : имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.

Параллельный параметрический стабилизатор на стабилитроне

Применяется для стабилизации напряжения в слаботочных схемах, так как для нормальной работы схемы ток через стабилитрон D1 должен в несколько раз (3-10) превышать ток в стабилизируемой нагрузке RL. Часто такая схема линейного стабилизатора применяется как источник опорного напряжения в более сложных схемах стабилизаторов. Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV применяется источник тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе

По сути, это рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входу эмиттерного повторителя. В нём нет цепей обратной связи, обеспечивающих компенсацию изменений выходного напряжения.

Его выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube, которая практически не зависит от величины тока, протекающего через p-n переход, и для приборов на основе кремния приблизительно составляет 0,6В. Зависимость Ube от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель (усилитель тока) позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в β раз (где β — коэффициент усиления по току данного экземпляра транзистора). Если этого недостаточно, применяется составной транзистор.

При отсутствии сопротивления нагрузки (или при токах нагрузки микроамперного диапазона), выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на 0,6В за счёт того, что Ube в области микротоков становится близким к нулю. Для преодоления этой особенности, к выходу стабилизатора подключают балластный нагрузочный резистор, обеспечивающий ток нагрузки в несколько мА.

Последовательный компенсационный стабилизатор с применением операционного усилителя

Часть выходного напряжения Uout, снимаемая с потенциометра R2, сравнивается с опорным напряжением Uz на стабилитроне D1. Разность напряжений усиливается операционным усилителем U1 и подаётся на базу регулирующего транзистора, включенного по схеме эмиттерного повторителя. Для устойчивой работы схемы петлевой сдвиг фазы должен быть близок к 180°+n*360°. Так как часть выходного напряжения Uout подаётся на инвертирующий вход операционного усилителя U1, то операционный усилитель U1 сдвигает фазу на 180°, регулирующий транзистор включен по схеме эмиттерного повторителя, который фазу не сдвигает. Петлевой сдвиг фазы равен 180°, условие устойчивости по фазе соблюдается.

Опорное напряжение Uz практически не зависит от величины тока, протекающего через стабилитрон, и равно напряжению стабилизации стабилитрона. Для повышения его стабильности при изменениях Uin, вместо резистора RV применяется источник тока.

В данном стабилизаторе, операционный усилитель фактически включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение резисторов в цепи обратной связи задают его коэффициент усиления, который определяет, во сколько раз выходное напряжение будет выше входного (то есть опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения Uz (напряжение стабилизации стабилитрона) должна быть выбрана меньше , чем Uout.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, за счёт большого коэффициента петлевого усиления современных ОУ ( G openloop = 105 ÷ 106).

Для исключения влияния нестабильности входного напряжения на режим работы самого ОУ, он может запитываться стабилизированным напряжением (от дополнительных параметрических стабилизаторов на стабилитроне).

Импульсный стабилизатор

В импульсном стабилизаторе ток от нестабилизированного внешнего источника подаётся на накопитель (обычно конденсатор или дроссель) короткими импульсами; при этом запасается энергия, которая затем высвобождается в нагрузку в виде электрической энергии, но, в случае дросселя, уже с другим напряжением. Стабилизация осуществляется за счёт управления длительностью импульсов и пауз между ними — широтно-импульсной модуляции. Импульсный стабилизатор, по сравнению с линейным, обладает значительно более высоким КПД. Недостатком импульсного стабилизатора является наличие импульсных помех в выходном напряжении.

В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом (зависит от схемы стабилизатора):

Понижающий стабилизатор : выходное стабилизированное напряжение всегда ниже входного и имеет ту же полярность.

Повышающий стабилизатор : выходное стабилизированное напряжение всегда выше входного и имеет ту же полярность.

Повышающе-понижающий стабилизатор : выходное напряжение стабилизировано, может быть как выше, так и ниже входного и имеет ту же полярность. Такой стабилизатор применяется в случаях, когда входное напряжение незначительно отличается от требуемого и может изменяться, принимая значение как выше, так и ниже необходимого.

Инвертирующий стабилизатор : выходное стабилизированное напряжение имеет обратную полярность относительно входного, абсолютное значение выходного напряжения может быть любым.

1.8.2. Стабилизатор переменного тока.

Ферромагнитные стабилизаторы

Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно через них подключали телевизоры. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а некоторые цепи и вовсе питались нестабилизированным напряжением), которые не всегда справлялись с колебаниями напряжения сети, особенно в сельской местности, что требовало предварительной стабилизации напряжения. С появлением телевизоров 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, необходимость в дополнительной стабилизации напряжения сети отпала.

Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность ВАХ насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах, но незначительное отклонение частоты питающей сети очень сильно влияло на характеристики стабилизатора.

Читайте так же:
Параметрический стабилизатор тока схема включения

Электромеханические стабилизаторы напряжения

Регулировка напряжения в электромеханических (электродинамических) стабилизаторах осуществляется автоматически, путём перемещения токосъёмного узла по обмотке трансформатора, что обеспечивает плавное изменение коэффициента его трансформации до достижения заданной величины выходного напряжения.

Это единственный тип стабилизаторов, обеспечивающий плавную регулировку напряжения не внося при этом искажений в форму синусоиды. Стабилизаторы этого типа обладают достаточно высокой точностью удержания выходного напряжения (2..3 %) и обеспечивают наиболее комфортный режим питания бытовой техники. Они успешно используются как в быту так и на производствах.

Однако, существует несколько ограничений области их применения: первое — невозможность работы при отрицательных температурах (в силу наличия открытых токоведущих поверхностей и опасности короткого замыкания из-за выпадения конденсата). Кроме этого, электромеханические стабилизаторы обладают сравнительно узким диапазоном входных напряжений (как правило, 150—260 Вольт) и невысокой скоростью регулировки, ограниченной скоростью перемещения сервоприводом токосъёмного узла.

В качестве токосъёмного элемента используются графитовые щётки или ролики с графитовым напылением. Роликовый токосъёмный узел менее капризен по отношению к запылению, однако требует проведения профилактических работ направленных на предотвращение заклинивания, поэтому такая конструкция используется, как правило, в промышленных стабилизаторах, а щёточный узел устанавливается в бытовых моделях. Скорость износа токосъёмных элементов обоих типов примерно одинакова и, в зависимости от интенсивности использования, через 7-11 лет требуется его замена.

Электронные стабилизаторы напряжения

Делятся на ступенчатые и непрерывного действия. Электронные ступенчатые стабилизаторы регулируют напряжение, переключая обмотки специального трансформатора посредством электронных ключей. Ключи управляются процессором по специальной программе.

В настоящее время существует два типа электронных стабилизаторов напряжения: с полупроводниковыми и релейными ключами. Последние было бы правильнее отнести к электронно-механическим, так как реле является электромеханическим элементом.

Стабилизаторы имеют большое быстродействие, поэтому применяются в комплексе с дорогостоящим оборудованием, требующем защиты от всех аномалий сети. Их также используют в жилых домах и на производствах. К преимуществам электронных стабилизаторов напряжения можно отнести их возможность работы при отрицательных температурах окружающей среды.

Электронные стабилизаторы непрерывного действия регулируют напряжение, изменяя либо сопротивление регулирующего элемента, как правило — транзистора, либо включая и выключая регулирующий элемент с высокой частотой (десятки килогерц), и управляя временем включенного и выключенного состояния регулирующего элемента (чаще всего IGBT транзистор). Такой метод регулирования называется ШИМ (широтно-импульсная модуляция). Стабилизаторы, использующие высокочастотную ШИМ, на данный момент являются наиболее совершенной реализацией стабилизатора переменного напряжения, и при правильном исполнении ближе всего к понятию «идеальный стабилизатор». В отличие от стабилизаторов инверторного типа, в них не происходит предварительного преобразования переменного напряжения в постоянное, а преобразованию подвергается непосредственно входное переменное напряжение, что обеспечивает им высокий КПД и приемлемую стоимость.

Импульсный стабилизатор напряжения

Отличительной особенностью и недостатком обычных линейных стабилизаторов напряжения, работающих в режиме сильных девиаций по входному уровню, является их низкий КПД. Подобное положение, как правило, объясняется значительными тепловыми потерями в элементах схемы. Помимо этого, такие устройства при больших нагрузочных токах (до десятков Ампер) выглядят очень громоздко и имеют значительный вес. Существенно улучшить все указанные параметры преобразовательного устройства удаётся в случае применения импульсного метода стабилизации.

Импульсное стабилизирующее устройство (общий вид)

Импульсный стабилизатор напряжения – это прибор особого класса, позволяющий поддерживать выходное напряжение в заданных пределах за счёт ключевого режима работы основных элементов схемы. Рассмотрим принцип действия этого устройства более подробно.

Основы импульсного преобразования

Прежде всего, следует знать, что импульсные устройства для получения стабилизированного напряжения, подобно своим линейным аналогам, могут выполняться по параллельной и последовательной схеме. И в том, и в другом случае функцию ключевого элемента традиционно выполняет мощный полевой транзистор. Поскольку в режиме ключа его рабочая точка мгновенно смещается из области насыщения в зону отсечки (быстро «проскакивая» активный участок), такая схема имеет минимальные тепловые потери. А это свидетельствует о том, что импульсный стабилизатор напряжения обладает высоким КПД.

Стабилизация выходного сигнала осуществляется за счёт управления длительностью или частотой следования вырабатываемых специальным генератором импульсов, что в электронике называется широтным (ШИ) или частотным (ЧИ) импульсным регулированием.

Обратите внимание! В некоторых моделях таких приборов применяется комбинированный широтно-частотный метод управления (ЧШИ).

В стабилизаторах первого типа (ШИ) периодичность следования импульсов остаётся величиной постоянной, а меняется лишь их длительность. Во втором случае изменению подлежит частота, а длина (скважность) импульсного сигнала со временем не меняется.

На выходе регулирующего преобразователя (инвертора) присутствует сигнал прямоугольной формы, который не годится для подачи в рабочую нагрузку. Поэтому его прежде следует выпрямить или сгладить до формы, пригодной для использования. Этим и объясняется наличие на выходе устройства специального фильтрующего модуля, состоящего из сглаживающих пульсации элементов. Их функцию традиционно выполняют емкостно-индуктивные цепочки П,- или Г-образного типа.

В зависимости от параметров этих цепей (от индуктивности дросселя, в частности), ток через фильтрующий LС-элемент может иметь прерывистый или постоянный характер. Всё определяется тем, успевает ли к приходу очередного импульса разрядиться через индуктивность заряженный ранее конденсатор. При предъявлении особых требований к уровню пульсаций предпочтение отдаётся неразрывному принципу формирования выходного тока.

Дополнительная информация. Своеобразной «расплатой» за это является значительный расход медного материала, идущего на изготовление катушки дросселя.

В тех случаях, когда значение коэффициента пульсаций не нормируется, допускается, чтобы схема работала в режиме прерывистых токов.

Блок-схема

Классический импульсный стабилизатор напряжения содержит в своём составе следующие обязательные модули:

  • Задающий генератор;
  • Непосредственно преобразователь (инвертор);
  • Сравнивающее устройство;
  • Фильтрующий элемент.

Задающий генератор (ЗГ) обеспечивает формирование импульсов с формой, близкой к прямоугольному стандарту. Последние поступают в преобразовательное устройство, где осуществляется их обработка по выбранному параметру управления (частоте, длительности или тому и другому сразу). Затем обработанные импульсы подаются на фильтрующий элемент, а после него – на выход и в цепочку обратной (управляющей) связи.

Ознакомиться с порядком работы устройства поможет приведённая ниже блок-схема.

Блок-схема стабилизатора импульсного типа

Важно! Ключевым звеном в этой схеме является цепочка обратной связи (устройство сравнения), наличие которой позволяет по состоянию выходного сигнала определять необходимость дополнительных действий (регулировок).

То есть когда выходной сигнал имеет идеальные параметры, устройство сравнивает его с образцовыми напряжениями и воспринимает это как команду к прерыванию управляющей операции. Если форма или другая характеристика выходного сигнала начинают отличаться от заданных в ТУ параметров, сравнивающий модуль (СУ) вырабатывает сигнал дополнительной корректировки формируемых генератором импульсов.

Преимущества ОС-регулирования

На задающий генератор подаётся разностный сигнал, пропорциональный отклонению параметров выходного напряжения от нормы, так что вся эта схема работает по принципу дифференциального усилителя. Такое схемное решение позволяет многократно увеличить чувствительность петли обратной связи (ОС) и повысить эффективность процесса регулирования.

Читайте так же:
Модуль стабилизатор напряжения с ограничением по току

В таком режиме формируемые ЗГ управляющие импульсы поступают на ключевые элементы преобразовательного устройства, где происходит их обработка с одновременной подготовкой к последующей фильтрации. При изменении частоты или ширины импульса сигналом с СУ удаётся добиться требуемого качества выходного напряжения.

Дополнительная информация. Возможны ситуации, когда необходимость в регулировке полностью исключается. Обычно это случается, когда выходное напряжение соответствует заданным ТУ требованиям.

Схемы управляющих устройств

Повышающие

Повышающие импульсные схемы стабилизации востребованы при необходимости подключения нагрузки, напряжение на которой должно превышать входной параметр на какую-то величину. При этом гальванической развязки между потребителем и питающей электрической сетью 220 Вольт не предусматривается. За рубежом этот принцип преобразования называется «boost converter», а его схема приводится на рисунке, размещённом ниже по тексту.

При поступлении управляющего напряжения между затвором и истоком транзистора VT1 он входит в состояние насыщения, обеспечивая беспрепятственное протекание тока через накопительный дроссель L1. При этом составляющая выходного тока создаётся за счёт зарядки конденсатора С1.

После снятия потенциала с транзистора VT1 он переходит в состояние отсечки; при этом на дросселе L1 появляется ЭДС самоиндукции, передающаяся через диод VD1 на нагрузку с той же полярностью. По окончании протекания тока по дросселю L1 катушка полностью отдаёт энергию в цепь. Её принимает конденсатор С1, который заряжается до тех пор, пока транзистор VT1 снова не окажется в насыщении.

Далее весь описанный процесс повторяется. Повышенное напряжение на нагрузке обеспечивается тем, что к выходному напряжению добавляется ЭДС, систематически запасаемая в дросселе и имеющая тот же знак.

Понижающий стабилизатор

Понижающий стабилизатор работает по тому же принципу, но только дроссель в этом случае включается после управляемого полевого транзистора (смотрите рисунок ниже).

Зарубежное название этого принципа преобразования – «chopper», а его характерной особенностью является пониженное выходное напряжение.

После подачи управляющего импульса на VT1 транзистор насыщается, вследствие чего через него начинает течь ток, поступающий через сглаживающий дроссель L1 непосредственно в нагрузку (диод VD1 закрыт обратным напряжением).

После снятия входного сигнала ключевой транзистор перейдёт в режим отсечки, что приведёт к резкому снижению тока. ЭДС самоиндукции дросселя L1 будет усиленно препятствовать его уменьшению, поддерживая процесс в нагрузке. Однако за счёт падения напряжения на катушке L1 его величина на выходе устройства будет всегда меньше входного значения (за счёт противоположного знака ЭДС).

Инвертирующее устройство

Этот тип стабилизаторов применяется при работе с нагрузками, имеющими фиксированный вольтаж выходного напряжения, сдвинутого по фазе относительно входного. При этом само его значение может быть как больше, так и меньше, чем входное (всё зависит от того, как было отстроено инвертирующее устройство).

Аналогично обеим предыдущим схемам здесь гальваническая развязка питающих и выходных цепей полностью отсутствует. На иностранном лексиконе такие стабилизаторы обозначаются как «buck-boost converter». Основное схемное отличие от понижающего преобразователя состоит в том, что дроссель и диод в этом случае поменялись местами. Причём полупроводниковый элемент включается в обратном (закрытом для прямого тока) направлении.

Такая замена приводит к сдвигу по фазе между входным и выходным сигналами на 90 градусов (иными словами – к его инверсии).

В заключительной части этого обзора обратим внимание на ещё одну деталь, характерную для всех рассмотренных разновидностей преобразующих устройств. В качестве коммутирующего ключа во всех схемах используется специальный полупроводниковый элемент с полевой структурой, управляемый не напряжением, а потенциалом. За счёт этого удаётся многократно сократить входные управляющие токи, а также дополнительно повысить КПД всего устройства в целом.

Видео

импульсный стабилизатор постоянного напряжения

Изобретение относится к электротехнике и может быть использовано в источниках вторичного электропитания радиоаппаратуры. Технический результат — повышение надежности стабилизатора путем исключения появления импульсного напряжения на нагрузке при его включении. Это достигается тем, что в стабилизатор введены защитный транзистор (10), RC-цепь из последовательно соединенных резистора (8) и конденсатора (7), а также диод (9), катод которого соединен с базой защитного транзистора (10) и точкой соединения резистора (8) и конденсатора (7) RC-цепи, которая включена между эмиттером защитного транзистора (10) и общим выводом стабилизатора. При этом переход эмиттер-коллектор защитного транзистора (10) подключен к выходному выводу LC-фильтра и выводу для подключения нагрузки. 2 ил.

Формула изобретения

Импульсный стабилизатор постоянного напряжения, содержащий регулирующий транзистор, подключенный эмиттером к входному выводу, а коллектором — к входу LC-фильтра и катоду коммутирующего диода, анод которого соединен с общим выводом, блок управления, выход которого соединен с базой регулирующего транзистора, и конденсатор, подключенный параллельно последовательно соединенным регулирующему транзистору и дросселю фильтра, отличающийся тем, что введены защитный транзистор такого же типа проводимости, что и регулирующий транзистор, переход эмиттер-коллектор защитного транзистора соединен с выходным выводом LC-фильтра и выводом для подключения нагрузки, последовательная RC-цепь, включенная между эмиттером защитного транзистора и общим выводом, а также диод, шунтирующий резистор RC-цепи, при этом база защитного транзистора подключена к точке соединения конденсатора и резистора последовательной RC-цепи и к катоду диода, анод которого соединен с общим выводом.

Описание изобретения к патенту

Изобретение относится к электротехнике и может быть использовано в источниках вторичного электропитания радиоаппаратуры.

Известен импульсный стабилизатор напряжения постоянного тока по а.с. 666531, G05F 1/56, обеспечивающий ограничение пускового тока в момент включения. Данный стабилизатор не обеспечивает защиты нагрузки от импульсного напряжения при включении стабилизатора.

Известны также импульсные стабилизаторы постоянного напряжения по а.с. 610095, G05F 1/58, 1408429, G05F 1/569, обеспечивающие защиту нагрузки от повышенного напряжения.

Недостатком известных стабилизаторов является сложность, обусловленная использованием блоков защиты, выполненных в виде стабилизаторов с непрерывным регулированием.

Наиболее близким по технической сущности к предлагаемому является импульсный стабилизатор постоянного напряжения по а.с. 679968, G05F 1/58, принятый за прототип.

На фиг.1 приведена схема стабилизатора-прототипа, где обозначено:

1 — регулирующий транзистор;

2 — дроссель фильтра;

3 — конденсатор фильтра;

4 — коммутирующий диод;

5 — блок управления;

Стабилизатор-прототип содержит регулирующий транзистор 1, LC-фильтр на дросселе 2 и конденсатор 3, который подключен к выходным выводам стабилизатора. При этом коммутирующий диод 4 соединен с входом LC-фильтра, выход блока управления 5 подключен к базе транзистора 1, а конденсатор 6 подключен параллельно последовательно соединенным транзистору 1 и дросселю 2.

Стабилизатор-прототип работает следующим образом.

При включении питающего напряжения ток заряда конденсатора фильтра 3 является суммой величины тока, проходящего по одной цепи (один вход стабилизатора, регулирующий транзистор 1, дроссель фильтра 2, конденсатор фильтра 3, другой вход стабилизатора), и величины тока, проходящего по другой цепи (один вход стабилизатора, конденсатор 6, конденсатор фильтра 3, другой вход стабилизатора). Это приводит к уменьшению времени установления напряжения на конденсаторе фильтра 3.

Читайте так же:
Отличие стабилизатора напряжения от стабилизатора тока

При установившемся режиме работы стабилизатора конденсатор 6 при открытом регулирующем транзисторе 1 разряжается по цепи: регулирующий транзистор 1, дроссель фильтра 2, причем направление тока разряда конденсатора 6 совпадает в дросселе фильтра 2 с направлением тока заряда конденсатора фильтра 3, что увеличивает величину магнитной энергии, запасаемой в дросселе фильтра 2. При закрытом регулирующем транзисторе 1 магнитная энергия дросселя 2 передается в нагрузку по цепи: дроссель фильтра 2, коммутирующий диод 4, нагрузка. Это способствует уменьшению при пуске времени установления напряжения на нагрузке и тока через регулирующий транзистор 1.

Недостатком стабилизатора-прототипа является то, что он не обеспечивает защиту нагрузки от повышенного напряжения, т.к. при его включении на выходе появляется импульсное напряжение, равное входному, что приводит к выходу из строя питаемой аппаратуры.

Задачей предлагаемого технического решения является повышение надежности стабилизатора путем исключения появления импульсного напряжения на нагрузке при его включении.

Для решения поставленной задачи в импульсный стабилизатор постоянного напряжения, содержащий регулирующий транзистор, подключенный эмиттером к входному выводу, а коллектором — к входу LC-фильтра и катоду коммутирующего диода, анод которого соединен с общим выводом, блок управления, выход которого соединен с базой регулирующего транзистора, и конденсатор, подключенный параллельно последовательно соединенным регулирующему транзистору и дросселю фильтра, согласно изобретению, введены защитный транзистор такого же типа проводимости, что и регулирующий транзистор, переход эмиттер-коллектор защитного транзистора соединен с выходным выводом LC-фильтра и выводом для подключения нагрузки, последовательная RC-цепь, включенная между эмиттером защитного транзистора и общим выводом, а также диод, шунтирующий резистор RC-цепи, при этом база защитного транзистора подключена к точке соединения конденсатора и резистора последовательной RC-цепи и к катоду диода, анод которого соединен с общим выводом.

На фиг.2 представлена схема предлагаемого стабилизатора, где обозначено:

1 — регулирующий транзистор;

2 — дроссель фильтра;

3 — конденсатор фильтра;

4 — коммутирующий диод;

5 — блок управления;

7, 8 — конденсатор и резистор последовательной RC-цепи;

10 — защитный транзистор.

Предлагаемый стабилизатор содержит регулирующий транзистор 1, эмиттером подключенный к входному выводу, а коллектором — к дросселю фильтра 2 и катоду коммутирующего диода 4, анод которого подключен к общему выводу стабилизатора. Другой вывод дросселя 2 соединен с одним выводом конденсатора 3 и эмиттером защитного транзистора 10, коллектор которого подсоединен к выводу для подключения нагрузки, база — с точкой соединения резистора 8 и конденсатора 7 последовательной RC-цепи и катодом диода 9, анод которого, другие выводы резистора 8 и конденсатора 3 соединены с общим выводом, другой вывод конденсатора 7 подсоединен к эмиттеру защитного транзистора 10, а конденсатор 6 подключен параллельно последовательно соединенным транзистору 1 и дросселю фильтра 2. Кроме того, выход блока управления 5 соединен с базой регулирующего транзистора 1, а входами — соответственно с общим выводом и точкой соединения конденсаторов 3, 6 и выходом дросселя фильтра 2. В качестве блока управления может быть использована, например, микросхема 1156ЕУ1.

Предлагаемый стабилизатор работает следующим образом.

При подключении напряжения питания к входным выводам стабилизатора конденсатор 6 не заряжен и на выходе дросселя фильтра 2 появляется импульсное напряжение, равное входному.

Поскольку эмиттерно-базовый переход защитного транзистора 10 зашунтирован конденсатором 7, транзистор 10 закрыт и напряжение на нагрузке равно нулю. По мере заряда конденсатора 7 происходит медленное открывание защитного транзистора 10 и напряжение на нагрузке увеличивается до своего номинального значения. После полного открывания защитный транзистор 10 остается в насыщенном состоянии. Скорость отпирания транзистора 10 определяется величиной емкости конденсатора 7 и сопротивлением резистора 8. Выбором этих параметров регулируется задержка момента нарастания выходного напряжения и его крутизна. При выключении стабилизатора конденсатор 7 с помощью диода 9 подключается к общему выводу, что обеспечивает его быстрый разряд.

Таким образом, по сравнению с прототипом в предлагаемом стабилизаторе при сохранении динамических характеристик при включении обеспечивается защита нагрузки от импульсного напряжения. Кроме того, использование в качестве защитного транзистора полевого транзистора обеспечивает повышение кпд на 5-10% за счет уменьшения падения напряжения на транзисторе.

Стабилизатор, стабилизация переменного сетевого напряжения. Импульсная схема. Своими руками. Наладка.

Схема импульсного стабилизатора переменного напряжения 220V (10+)

Импульсный стабилизатор переменного напряжения

1 2

Проблемы стабилизации сетевого напряжения

Качество электроснабжения в наших изношенных и перегруженных сетях оставляет желать лучшего. Напряжение может изменяться в широких пределах, что не полезно для бытовых приборов. Некоторые из них просто не могут работать в таких условиях, другие — быстрее выходят из строя. Для решения проблемы обычно используются стабилизаторы переменного напряжения.

Наиболее популярными в настоящее время являются стабилизаторы, работа которых основана на анализе входного напряжения и переключении обмоток трансформатора таким образом, чтобы выходное напряжение поддерживалось в допустимых пределах. Если сетевое напряжение изменяется редко, то такой подход идеален. Действительно, система адаптировалась к определенному входному напряжению и работает себе спокойно. Если напряжение изменилось, то стабилизатор переключается и продолжает работать. Но в наших сетях напряжение зачастую скачет. В этом случае стабилизаторы, выполненные по такой технологии, начинают постоянно переключаться. Каждое переключение — это стресс для самого стабилизатора, для Ваших приборов, подключенных к нему (при переключении возникает резкий перепад напряжения и короткое полное прерывание тока) и для Вас самих (переключение обычно сопровождается морганием света).

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Долго такие частые переключения стабилизатор, как правило, не выдерживает. Не выдержат их и бытовые приборы, да и люди. Для решения проблемы в более совершенных стабилизаторах применяют твердотельные реле, которые не имеют контактов, подверженных износу, и дополнительные способы стабилизации, исключающие скачки в момент переключения. Но совершенные стабилизаторы получаются дорогими.

К тому же, такой стабилизатор не улучшает форму сетевого напряжения. Если форма искажена из-за перегрузки сетей, то и на Ваши бытовые приборы напряжение поступит искаженной формы.

Импульсный стабилизатор переменного напряжения

Альтернативой может стать выпрямление сетевого напряжения, стабилизация постоянного напряжения на уровне 310 вольт, преобразование постоянного напряжения в синусоиду. При таком подходе можно обеспечить хорошее качество выходного напряжения вне зависимости от качества входного. На вход такого стабилизатора можно подавать меандр, псевдосинусоиду, треугольное напряжение, просто шум. Частота входного напряжения тоже значения не имеет (в определенных пределах). Такой стабилизатор можно использовать для преобразования частоты, если есть необходимость получить 50 Гц из 60 или из 300, или наоборот.

Схема состоит из двух блоков. Первый блок выше голубой линии — это преобразователь постоянного напряжения в синусоиду, второй ниже — это выпрямитель и стабилизатор постоянного напряжения, построенный на основе схемы корректора коэффициента мощности. Точки верхней и нижней схем, помеченные одинаковыми буквами, должны быть соединены.

Читайте так же:
Lm317 стабилизатор тока с индикацией

Маркировка элементов схем сохранена такой же, как в статьях, посвященных этим схемам, чтобы было понятнее. Так что над голубой линией есть R3 и под тоже есть R3.

По следующим ссылкам расположены статьи, поясняющие работу блоков схемы:

В схему источника синусоидального напряжения внесены следующие изменения: Во-первых, применен более совершенный и надежный генератор синусоидальных колебаний. VD1, VD2 — стабилитроны на 3.6 вольта, включенные встречно последовательно. Во-вторых, исключена схема выпрямления и фильтрации входного напряжения, так как нижний блок уже выдает постоянное стабильное напряжение. В-третьих, исключена схема выработки низкого напряжения для питания схемы управления. Эта схема реализована в нижнем блоке, напряжение от нее подается на схему управления, в том числе, верхнего блока.

Мощность изделия ограничена мощностью его составных частей. Как увеличить мощность этих устройств, читайте по ссылке.

1 2

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Здравствуйте! Веду кабель ВББШВ 10 мм2 общ. длиной 40 метров от щитка дома до бани. У дома плохо сделано заземление. Могу ли я взять вместо кабеля 2*10 кабель 3*10 и одну его жилу использовать для подводки к щитку дома хорошо сделанного заземления на щитке у бани? Заранее признателен. Читать ответ.

Здравствуйте. Собираю комлект устройств. Именно — резонансный повышающий преобразователь 12/300, преобразователь постоянного напряжения в синусоиду. Поясните, нужен ли между ними стабилизатор постоянного напряжения, построенный на основе схемы корректора коэффициента мощности, чтобы на выходе было стабилизированное 220? Ведь никаких обратных связей в схеме не предусмотренно. Б Читать ответ.

Здравствуйте. Для проведения экспериментов нам требуется источник синусоидального сигнала 100 и 200 (220)В, 20кГц. До 10А. Могу ли я взять за основу приведенные на Вашем сайте материалы для его изготовления? Важно получить такую синусоиду, чтобы по фигурам Лиссажу можно было определить коэфф. мощности, максимально точно посчитать косинус фи. В качестве первичного источника рас Читать ответ.

Уважаемые любители электронных самоделок, изготовил я печатные платы прямо на принтере р220 для импульсного стабилизатора переменного напряжения, если кому интересно могу поделится опытом изготовления плат на принтере. Спаял на плате детали и думал что всё это начнёт сразу работать. Но оказалась, что частота генератора не 50 герц а 150 с теми номиналами С4.С6 по 0.1 мкФ. Пришл Читать ответ.

Цитата: ‘На вход такого стабилизатора можно подавать меандр, псевдосинусоиду, треугольное напряжение, просто шум. Частота входного напряжения тоже значения не имеет (в определенных пределах)’ А какой диапазон напряжений этот стабилизатор может стабилизировать? допустим если я на вход дам 120В переменного напряжение, на выходе получу 220В синус? Заранее благодарю Читать ответ.

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида.
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

Инвертор, преобразователь, чистая синусоида, синус.
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за.

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.

Тиристорное переключение нагрузки, коммутация (включение / выключение).
Применение тиристоров в качестве реле (переключателей) напряжения переменного то.

Повышающие переменное, постоянное напряжение бестрансформаторные преоб.
Повышение напряжения без трансформатора. Умножители. Рассчитать онлайн. Преобраз.

Простейшие бестрансформаторные импульсные преобразователи напряжения

Многие начинающие радиолюбители затрудняются определить тип блока питания, а ведь это не так уж и сложно. Основные способы преобразования напряжения заключаются в использовании одного из двух вариантов схемотехники:

Бестрансформаторные источники питания.

Содержание статьи

В свою очередь трансформаторные различаются по типу схемы:

Сетевая, с трансформатором, работающим на частоте 50 Гц;

Импульсная, с трансформатором, работающим на высоких частотах (десятки тысяч Гц).

Импульсные схемы блоков питания позволяют увеличить общий КПД конечного изделия, за счет избегания статических потерь на линейных стабилизаторах и прочих элементах.

Бестрансформаторные схемы

Если возникает необходимость питания от бытовой электросети 220 В, простейшие приборы можно включить от блоков питания использующих балластные элементы для понижения напряжения. Широко известным примером такого источника питания является схема с балластным конденсатором.

Однако существует ряд драйверов со встроенным ШИМ-контроллером и силовым ключом для построения бестрансформаторного импульсного понижающего преобразователя, такие очень часто встречаются в светодиодных лампочках и другой технике.

В случае питания от источника постоянного тока, например, аккумуляторов или других гальванических элементов питания, используют:

Линейный стабилизатор напряжения (интегральный стабилизатор типа КРЕН или L78xx с, или без проходного транзистора, параметрического стабилизатора из стабилитрона и транзистора)

Импульсного преобразователя (понижающего – BUCK, повышающего – BOOST, или понижающе-повышающего – BUCK-BOOST)

Преимущество бестрансформаторных блоков питания и преобразователей заключаются в следующем:

Нет необходимости мотать трансформатор, преобразование осуществляется за счёт дросселя и ключей;

Следствием из предыдущего являются малые габариты источников питания.

Отсутствие гальванический развязки, при неисправностях ключей приводит к появлению напряжения первичного источника питания. Это критично особенно если в его роли выступает сеть 220 В;

Опасность поражения электрическим током, как следствие гальванической связи;

Большие габариты дросселя на преобразователях высокой мощности ставят под сомнение целесообразность использования этой топологии блоков питания. При сопоставимых массогабаритных показателях можно использовать уже трансформаторный, гальванически развязанный преобразователь.

Основные разновидности импульсных преобразователей напряжения

В отечественной литературе часто встречается сокращение «ИППН», которое расшифровывается как: Импульсный Понижающий (или повышающий, или и то, и другое) Преобразователь Напряжения

В качестве основы можно выделить три базовые схемы.

1. ИППН1 – Понижающий преобразователь, в англоязычной литературе – BUCK DC CONVERTER или Step-down.

2. ИППН2 – Повышающий преобразователь, в англоязычной литературе – BOOST DC CONVERTER или Step-up.

3. ИППН3 – Инвертирующий преобразователь с возможностью как повышения, так и понижения напряжения, BUCK-BOOST DC CONVERTER.

Как работает импульсный понижающий преобразователь?

Начнем с рассмотрения принципа работы первой схемы – ИППН1.

В схеме можно выделить два питающих контура:

1. «+» от источника питания подаётся через закрытый ключ (транзистор любого типа соответствующей проводимости) на Lн (накопительный дроссель), далее ток протекает через нагрузку к «–» источника питания.

2. Второй контур образован из диода Д, дросселя Lн и подключенной нагрузки Rн.

Когда ключ замкнут, ток проходит по первому контуру, через катушку индуктивности протекает ток, и в её магнитном поле накапливается энергия. Когда мы выключаем (размыкаем) ключ, энергия, запасённая в катушке, рассеивается в нагрузку, при этом ток протекает через второй контур.

Напряжение на выходе (нагрузке) такого преобразователя равняется

Читайте так же:
Автомобильный стабилизатор напряжения тока

Ku – это коэффициент преобразования, который зависит от коэффициента заполнения управляющих импульсов силового ключа.

Коэффициент заполнения «D» – это отношение времени, когда ключ открыт, к периоду ШИМ. «D» может принимать значения от 0 до 1.

ВАЖНО: Для ИППН1 Ku=D. Это значит, что пределы регулирования данного стабилизатора приблизительно равны – 0…Uвых.

Напряжение на выходе такого преобразователя аналогично по полярности с напряжением на входе.

Как работает импульсный повышающий преобразователь напряжения

ИППН2 – способен повышать напряжение от напряжения питания до величины в десятки раз превышающей его. Схематически он состоит из тех же элементов что и предыдущая.

Любой преобразователь подобного типа в своем составе имеет три основных действующих компонента:

Управляемый ключ (биполярный, полевой, IGBT, MOSFET транзисторы);

Неуправляемый ключ (выпрямительный диод);

Ток всегда протекает через индуктивность, изменяется лишь его величина.

Для того, чтобы понять принцип работы этого преобразователя, нужно вспомнить закон коммутации для катушки индуктивности: «Ток через катушку индуктивности не может измениться моментально».

Это вызвано таким явлением как ЭДС самоиндукции или противо-ЭДС. Так как электромагнитное поле индуктивности препятствует скачкообразному изменению тока, катушку можно представить в виде источника питания. Тогда в это схеме, когда ключ замыкается через катушку начинает протекать ток большой величины, но, как уже было сказано резко он возрасти не может.

Противо-ЭДС это явление, когда на концах катушки возникает ЭДС противоположное тому, что приложено. Если представить это на схеме для наглядности, придется представить катушку индуктивности в виде источника ЭДС.

Под цифрой «1» обозначено состояние схемы, когда ключ замкнут. Обратите внимания что источник питания и условное обозначение ЭДС катушки соединены положительными выводами последовательно, т.е. величины их ЭДС вычитаются. В таком случае индуктивность препятствует прохождению электрического тока, а вернее замедляет его рост. По мере роста, через определенный постоянной времени промежуток, величина противо-ЭДС уменьшается, а ток через индуктивность нарастает.

Лирическое отступление:

Величина ЭДС самоиндукции, как и любое другое ЭДС измеряется в Вольтах.

В этот промежуток времени основной ток протекает по контуру: источник питания-индуктивность-замкнутый ключ.

Когда ключ SA размыкается, схема 2. Ток начинает течь по такому контуру: источник питания-индуктивность-диод-нагрузка. Так как сопротивление нагрузки, чаще значительно больше, чем сопротивление канала замкнутого транзистора. При этом снова – ток, протекающий через индуктивность не может измениться скачком, индуктивность всегда стремится поддержать направление и величину тока, поэтому возникает снова противо-ЭДС, но уже в обратной полярности.

Обратите внимание, как на второй схеме подключены полюса Источника питания и замещающего катушку источника ЭДС. Они соединены последовательно противоположными полюсами, а величины этих ЭДС складываются.

Таким образом происходит повышение напряжения.

Во время процесса накопления энергии индуктивности нагрузка питается энергией, которая ранее была запасена в сглаживающем конденсаторе.

Коэффициент преобразования в ИППН2 равен

Как видно из формулы – чем больше D – коэффициент заполнения, тем больше выходное напряжение. Полярность выходного питания, совпадает со входным у данного типа преобразователя.

Как работает инвертирующий преобразователь напряжения

Инвертирующий преобразователь напряжения довольно интересное устройство, ведь он может работать, как в режиме понижения напряжения, так и в режиме повышения. Однако стоит учитывать, что полярность его выходного напряжения противоположна входному, т.е. положительный потенциал оказывается на общем проводе.

Инвертирование также заметно по направлению, в котором включен диод Д. Принцип работы немного похожу на ИППН2. В то время, когда ключ Т замкнут происходит процесс накопления энергии индуктивности, питание от источника не попадает в нагрузку из-за диода Д. Когда ключ закрывается, энергия индуктивности начинает рассеиваться в нагрузке.

Ток продолжает течь через индуктивность, возникает ЭДС самоиндукции, направленная таким образом, что на концах катушки формируется полярность, противоположная первичному источнику питания. Т.е. в узле соединения эмиттера транзистора (сток, если транзистор полевой), катода диода и конца обмотки катушки формируется отрицательный потенциал. На противоположном конце, соответственно, положительный.

Коэффициент преобразования ИППН3 равен:

Путем несложных подстановок коэффициента заполнения в формулу, мы определим, что до величины D в 0.5, этот преобразователь выступает в роли понижающего, а свыше – повышающего.

Как управлять такими преобразователем?

Описывать все варианты построения ШИМ-контроллеров можно бесконечно долго, об этом можно написать несколько томов технической литературы. Я же, хочу ограничиться перечислением нескольких простых вариантов:

1. Собрать схему несимметричного мультивибратора. Вместо VT3 подключается транзистор в схемах ИППН-ов.

2. Чуть более сложный вариант, но более стабильный в плане частоты – это ШИМ на NE555 (для увеличения нажмита на картинку).

На схеме сделать правки, VT1 – это транзистор, изменяем схему так, чтобы на его месте был транзистор ИППН.

3. Вариант использовать микроконтроллер, так вы можете еще и сделать много дополнительных функций, для новичков хорошо подойдут AVR микроконтроллеры. Есть прекрасный видеоурок об этом.

Выводы

Импульсные преобразователи напряжения – это очень важная тема в отрасли блоков питания для радиоэлектронной аппаратуры. Подобные схемы используются повсеместно, а, в последнее время, с ростом «самодельщиков» или как это сейчас модно называть «DIY’щиков» и популярностью сайта aliexpress такие преобразователи стали особенно популярны и востребованы, вы можете заказать готовую плату ставшего уже классическим, преобразователя на LM2596 и подобных всего за пару долларов, при этом вы получите возможность регулировки напряжения или тока, или и того и другого.

Другая популярная плата – это mini-360

Вы можете заметить, что в этих схемах отсутствует транзистор. Дело в том, что он встроен в микросхему, кроме него там находится ШИМ-контроллер, цепи обратной связи для стабилизации выходного напряжения и другое. Тем не менее эти схемы могут усиливаться установкой дополнительного транзистора.

Если вам интересно спроектировать схему под ваши нужды, тогда более подробно с расчётными соотношениями вы можете ознакомится в следующей литературе:

«Компоненты для построения источников питания», Михаил Бабурин, Алексей Павленко, Группа компаний «Симметрон»

«Стабилизированные транзисторные преобразователи» В.С. Моин, Энергоатомиздат, М. 1986.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector