Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Драйвер стабилизатор тока led

Электроника для самоделок с Алиэкспресс

Я подбираю для вас ссылки на самые дешёвые компоненты, с бесплатной доставкой, для сборки электронных самоделок, а также рассказываю, что из всего этого можно сделать своими руками. Это интересно и познавательно, ПРИСОЕДИНЯЙТЕСЬ!

Самый лучший LED-драйвер MINI360

Почесав голову, с девяностопроцентной вероятностью можно сказать, что вы остановитесь на варианте с LM317, потому как городить огород под полсотни штук элементов на плате, вам либо не под силу, либо не стоят того ваши светодиодные творения, собранные на коленке, или приобретенные в Китае.

Схема включения LM317 для стабилизации тока

А стабилизировать то хочется! Ну не будете вы спать спокойно, если ваши дневные ходовые моргают, когда прибавляешь газу!

В общем-то, схема стабилизатора тока на LM317 не плоха, но имеет существенный минус – греется. Нужно прилаживать радиатор, а это увеличение габаритов конструкции, да и стоимости тоже. Еще один минус — нужно подбирать номинал резистора, чтобы выставить необходимый ток светодиодов. Это тоже не всегда быстро и просто.

К счастью, добрые китайцы напряглись и совершили чудо, избавляющее от всех подобных проблем и решающее вопрос с LED- драйвером гениально и просто.

Они смастерили миниатюрный модуль » DSN-MINI-360 » на микросхеме MP2307, который, не смотря на свои размеры 11мм x 17мм, способен обеспечить стабилизацию тока величиной до без применения радиатора.

Это означает, что одной этой маленькой платки достаточно сразу для двух фонарей ДХО. Ограничительные сопротивления теперь попросту не нужны, так как необходимый ток выставляется подстроечным сопротивлением. КПД>92%

Когда вы узнаете цену, будете сначала смеяться, потом плакать, а может наоборот. 30 РУБЛЕЙ! Если покупать 10 шт, то еще дешевле. Это цена одной только LM317 в магазине радиодеталей.

Разумеется, для модуля можно найти больше применений, чем только драйвер-стабилизатор для ДХО.

Немного характеристик DSN-MINI-360 DC-DC конвертера понижающего модуля:

Напряжение на входе: 4.75В — 23В
Напряжение на выходе: 1В — 17В (регулируется)
Выходной ток: 3А (реально больше 1А не рекомендуется)
Частота переключения: 340кГц
Пульсация выходного напряжения: менее 30мВ
КПД: до 96%
Рабочая температура: -40 C – + 85 С
Размеры модуля: 17мм x 11мм x 3.8мм
Вес: 2 г

Ссылки для покупки по самой низкой цене с бесплатной доставкой:
Купить от 1 шт mini360
Купить от 1 шт mini360
Купить 5шт mini360
Купить 10шт mini360

Arduino.ru

Драйвер мощного светодиода. Из чего сделать?

Всем привет! Имеются у меня мощные светодиоды. Из спецификации:
Voltage: 3.4-3.6V

Current: 3W / 700Ma

Необходимо запитать от Li-ion аккумулятора. Посмотрел на Алиекспрессе драйвера для светодиодов с питанием от Li-ion аккумулятора, но цены какие-то неадекватные!

Вопрос в чем: из чего можно сделать драйвер? Какие есть для этого простые схемы?

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Я попробовал использовать стабилизатор напряжения на LM2596 (с регулировкой тока). Но на выходе всего 100 мА получается и выше не подымается. Для светодиода этого слишком мало.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Неадекватные чему? Сколько ты готов заплатить?

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

стоит смотреть схемы для фонариков, в интернете их полно.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Он вроде как по напряжению, да и рассчитан на 2А. А как ты 100mA получил?

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Цены на драйверы не адекватные потому что один драйвер стоит дороже чем фонарик на 18650 с которого можно вытянуть такой же драйвер.

Пересмотрел много схем. Либо я как-то не так ищу, либо мне попадаются слишком сложные схемы, либо схемы с питанием выше 6 вольт.

lluceu , есть стабилизаторы LM2596 с регулировкой тока

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Пересмотрел много схем. Либо я как-то не так ищу, либо мне попадаются слишком сложные схемы, либо схемы с питанием выше 6 вольт.

не ищите готовый драйвер. разбейте задачку на две. Вам нужна а) повышайка на ваш ток с 3.5 до 4.5в примерно б) стабилизатор тока.

Повышайку, имхо, лучше купить готовую, простых схем повышаек не видел. Стаб тока можно собрать и самому, вариантов масса — на паре транзисторов, на TL431, на lm317 и тд и тп

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Пересмотрел много схем. Либо я как-то не так ищу, либо мне попадаются слишком сложные схемы, либо схемы с питанием выше 6 вольт.

не ищите готовый драйвер. разбейте задачку на две. Вам нужна а) повышайка на ваш ток с 3.5 до 4.5в примерно б) стабилизатор тока.

Повышайку, имхо, лучше купить готовую, простых схем повышаек не видел. Стаб тока можно собрать и самому, вариантов масса — на паре транзисторов, на TL431, на lm317 и тд и тп

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

напряжение заряженного Li-ion аккумулятора — 4,2-,4.5В, рабочий диапазон 3,8-3,2В. напряжение LED 3,6В, замечу что это признак плохого LED, норма 3,2-3,4В. Ставим AMC7135 с радиатором, на 700ма — 2 паралельно. Такой модуль стоит от 150р.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

напряжение заряженного Li-ion аккумулятора — 4,2-,4.5В

output dropout voltage = 0.35

3.7 — 0.35 Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Читайте так же:
Стабилизатор напряжения с защитой от перегрузки по выходному току

Повышайка на XL6009 работает до 2.8 В (не по даташиту, а измерено). Пин ЕN оторвать от Vin и подключить через делитель Vin-EN-земля (подстроечник 10-50 кОм) и установить в такое положение, чтоб XL6009 отрубалась при снижении напряжения например до 3.5 В. Чтоб не разрядить аккум в ноль. Стабилизатор тока на ОУ или TL431.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

напряжение заряженного Li-ion аккумулятора — 4,2-,4.5В

output dropout voltage = 0.35

3.7 — 0.35 Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Если глянуть в паспорт AMC7135, обнаружится что рабочий диапазон 2,8-6В, это линейный стабилизатор, при уменьшении напряжения перестает стабилизировать, но выдает на 0.1В меньше чем на входе. AMC7135 разработан именно для фонарика с 1 Li-ion аккумулятором, выпускается уже лет 10.

Если глянуть в паспорт, то ничего такого там нет. И даже если бы и было, то 2.8 это слегка поздно.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

тож недавно сталкивался с такой надобностью.

посмотрите схемы драйверов от фонариков. поищите по форумам фонариков.
// я там особо не лазил , но думаю там должно быть что.

из личных наблюдений:

1. самые дешман схемотехники фонариках , это просто ШИМ на светодиод , минус — даже на полной мощности можно заметить мерцание , при напряжении на литии 4.2в. Когда напряжение садится до 3в , увидите что яркость светодиода упала (тк. нет gовашающего dc-dc), что тоже минус.

2. нормальные драйвера . это хорошие понижающие-повышающие синхронные драйвера. К примеру когда 4.2в они понижают, когда 3.0в , они повышают . Но проще китайцам для мощных фонариков , оказалось поставить 2(3) лития , и с 6. 8.4в применить просто понижайку.

// как-то заказывал на али Cree платы с драйверами https://aliexpress.ru/item/33027806802.html (в частности синенькие платки input 3-4.2V) , по описанию они работают от лития , А оказалось что это повышаки от батарейки 1.5в , а не повышайки/понижайки. В итоге при подаче 3-4в , они не могут понизить , и светодиод питается чрезмерным током через измерительный шунт.
Применил на срочняк план Б , воткнул повышайки на базе mt3608 (они работают от пониженного напряжения) , токовый шунт поставил 1ом SMD типоразмер 2512 с переходными отверстиями и металлизацией , в итоге удалось вытянуть 0.6А без сильного нагрева . При 4.1в этот резистор играет роль токоограничивающего , и получается теже около 0.6А , из-за падения прямого напр. на шунте + на диоде ss34 + на дросселе. На границе 3.7в , из-за переходных процессов включения/выключения dc-dc , чтоб избежать писка дросселя , пришлось поставить на выход dc-dc конденсатор 1000мкф.
Есть один большой минус такой схемотехники , если произойдёт обрыв светодиода то произойдёт большой пых (если на выходе поставите кондёры тантал) , из-за что дс-дс будет безмерно повышать напряжение , пытаясь стабилизировать ток на токовом шунте.
В нормальных светодиодных драйверах есть для этого контроль выходного напряжения , поэтому у вас не получится такая идея — дай-ка я поставлю последовательно светодиоду ещё один и пусть драйвер повысит напряжение и будет по прежнему поддерживать ток , а н нет , он будет уходить в защиту чтоб не спалиться.
mt3608 не годятся для больших токов , т.к. у них не маленькое напряжение компаратора =0.6в , поэтому на 1оме токоизмерительного шунта выделяется аж 0.6Вт тепла.

короче варианты:
— на али взять мощные готовые драйвера с запасом (увеличить токограничивающий шунт чтоб понизить ток), и не заморачиваться .
,потому как сделать дешевле чем у китайцев , у вас врятли получиться + потратить уйму времени.
— в чипдипе поискать , посмотреть даташиты . поискать на профильных форумах.

LED-драйверы задней подсветки ЖК панелей. Схемотехника на примере ИМС ADD5201

  • 30 Янв 2020

Буквально несколько лет назад в качестве задней подсветки ЖК панелей широко применялись флуоресцентные лампы различных типов (CCFL — Cold Cathode Fluorescence Lamp, EEFL — External Electrode Fluorescent Lamp). В настоящее время практически все панели, за очень редким исключением, в качестве источника света задней подсветки используют белые светодиоды (White LED — WLED). Так как размеры светодиодов малы, то для создания светового потока соответствующей мощности требуется большое количество светодиодов, как правило, исчисляемое несколькими десятками. Чаще всего их размещают на подложке в виде узкой светодиодной линейки (рис. 1).

Все множество светодиодов разбивается на несколько групп последовательно включенных светодиодов — WLED-линеек. В каждой такой группе находится от 6 до 10 WLED. Таким образом, если для задней подсветки необходимо, например, 64 WLED, то их можно распределить на 8 линеек, каждая из которых будет состоять из 8 последовательно включенных светодиодов (рис. 2).

Ток каждого WLED, используемого в задней подсветке, как правило, находится в диапазоне 20…40 мА. Поэтому в каждой линейке должен протекать ток именно этой величины. Также следует напомнить, что падение напряжения на открытом WLED находится, чаще всего, в диапазоне 3…4 В. Таким образом, к WLED-линейке необходимо приложить напряжение, приблизительно равное произведению количества светодиодов на величину падения напряжения на одном из них (именно поэтому на рис. 2 указано напряжение питания 34 В).

Еще на один аспект работы задней подсветки необходимо обратить внимание — это стабилизация и регулировка тока светодиодов. Без стабилизации тока невозможно говорить о качественной подсветке, так как без обратной связи световой поток будет изменяться под действием различных факторов, например, в зависимости от температуры WLED. Потому необхо-
димо контролировать величину тока, протекающего через светодиоды, и в случае изменения тока его необходимо стабилизировать.

Читайте так же:
Крен в стабилизаторе тока

Теперь несколько слов о регулировке. Любой дисплей предполагает регулировку такого параметра изображения, как яркость. Регулировка яркости в ЖК панелях традиционно осуществляется изменением мощности светового потока задней подсветки, т.е. изменением яркости источника света. Поэтому в системе задней подсветки необходимо предусмотреть возможность изменения тока светодиодов в ответ на некоторое внешнее управляющее воздействие (например, вращение ручки регулировки яркости). При этом изменение тока светодиодов должно осуществляться пропорционально величине входного управляющего сигнала. Процесс регулировки яркости в зарубежной литературе называют диммингом (Dimming).

Таким образом можно отметить, что корректная работа светодиодов невозможна без соответствующего управления, осуществляемого специализированными микросхемами-контроллерами. Эти ИМС называются драйверами светодиодов (LED Driver). К функциям LED Driver также можно отнести и включение-выключение светодиодов по внешнему управляющему сигналу (рис. 3). Под термином LED Driver понимают, с одной стороны, микросхему, а с другой стороны, весь модуль, включающий и микросхему, и ее внешние элементы.

В настоящее время для управления светодиодами разработаны микросхемы LED-драйверов, выполняющие абсолютно все необходимые функции. Интегральное исполнение этих микросхем позволяет сделать схему управления LED чрезвычайно компактной.

Отметим основные функции интегральных LED-драйверов:

  • контроль (регулировка) и стабилизация тока LED;
  • программирование величины тока LED;
  • ограничение тока LED на безопасном уровне;
  • формирование, контроль и стабилизация питающего напряжения LED;
  • защита от превышения напряжения на LED;
  • термическая защита;
  • регулировка яркости LED-линеек (Dimming);
  • защита от низкого напряжения питания ИМС;
  • защита от обрыва в цепи LED-линеек.

Выше уже отмечалось, что для работы LED-подсветки требуется относительно высокое напряжение — от 20 до 40 В, в зависимости от количества светодиодов в одной линейке. Откуда берется это напряжение, ведь на ЖК панель оно не подается? Оказывается, это напряжение формирует из какого-либо низковольтного напряжения (обычно из 12 В) повышающий DC/DC-преобразователь, установленный на плате ЖК панели. Этот повышающий DC/DC-преобразователь также является элементом LED-драйвера (рис. 4). Существуют разные варианты схемотехники повышающих преобразователей для LED, но в большинстве современных ЖК панелей применяется так называемый Boost-регулятор, эквивалентная схема которого представлена на рис. 5.

Рис. 4. Структура LED-драйвера

В современных ИМС LED-драйверов узел DC/DC-преобразователя интегрирован в ИМС. Это позволяет значительно упростить схему подсветки за счет снижения количества внешних элементов, а также за счет использования единой схемы управления. Традиционным решением для современных LED-драйверов является интегральное исполнение силового транзистора BOOST-регу ля то ра и наличие встроенной схемы ШИМ контроллера, управляющего этим силовым транзистором (рис. 6). Такое исполнение позволяет LED-драйверу контролировать напряжение светодиодов, управлять им и осуществлять защиту от превышения данного напряжения.

Теперь перейдем к рассмотрению реальной схемы LED-драйвера. В настоящее время LED-драйверы и DC/DC-преоб ра зо ватели напряжения светодиодов физически размещаются на управляющей плате ЖК панели. Существуют и другие варианты, например, когда LED-драйвер расположен на основной плате монитора (рис. 7). Но такое решение не носит массового характера, поэтому остановимся на традиционных подходах.

Сегодня производители микросхем предлагают различные LED-драйверы в количестве, достаточном для выпуска справочника по ним на многие сотни страниц. В матрице, которая попала к автору на ремонт, для управления задней подсветкой используется контролер ADD5201, выпускаемый компанией Analog Devices. Сама же панель типа LP173WD1(TL) (N2) производится компанией LG. ИМС LED-драйвера находится недалеко от микросхемы TCON и рядом с разъемом, к которому подключается модуль задней подсветки (рис. 8).

На ЖК панель поступают цифровые данные о цвете в формате LVDS через внешний 40-контактный однорядный разъем CN1. Кроме сигналов LVDS через контакты 31-40 разъема CN1 на матрицу подаются сигналы управления LED-подсветкой.

Разъем для подключения светодиодных линеек CN2 является 9-контактным, однако два из них не задействованы. В данной модели матрицы все светодиоды объединены в пять цепочек (рис. 9).

Принципиальная электрическая схема LED-драйвера ЖК панели LP173WD1 на основе ИМС ADD5201 приведена на рис. 10. Количество внешних элементов ИМС минимально. Пояснения к принципиальной схеме представлено в виде описания назначения выводов ADD5201, приведенного в таблице. ИМС ADD5201 предназначена для управления восемью LED-линейками, в то время как в рассматриваемой схеме она управляет пятью LED-линейками. Остальные выводы, соответствующие управлению светодиодами (выв. 13-15) подключены к «земле», и неясно, то ли эти контакты не используются, то ли они могут быть задействованы для управления светодиодами, но выключены только в данной схеме.

Лучшее понимание того, как функционирует ADD5201, дает ее блок-схема, она приведена на рис. 11.

Типовые неисправности LED-подсветки на основе ИМС ADD5201

Хочется отметить, что микросхема ADD5201 достаточно часто применяется для построения драйверов, управляющих LED-подсветкой ЖК панелей. Ее можно встретить на панелях самых разных производителей и самых разных размеров. Также следует упомянуть, что из-за большой популярности этой микросхемы и ее широкого применения, количество упоминаний ADD5201 при описании неисправностей LED-подсветки достаточно велико.

При неработающей LED-подсветке, в первую очередь, необходимо обратить внимание на токовый предохранитель, установленный в цепи питания LED-драйвера (F2 на рис. 10). Сгоревший предохранитель — далеко не редкость в подобных схемах.

Если предохранитель в обрыве, то в обязательном порядке следует убедиться в исправности силового транзистора BOOST-регулятора, интегрированного в ADD5201. Типовой проблемой этого транзистора является его пробой. Убедиться в отсутствии пробоя транзистора можно измерением сопротивления между выводами 23, 24 микросхемы ADD5201 и «землей». Наличие низкого сопротивления (единицы Ом) указывает на неисправность транзистора и на необходимость замены микросхемы.

Читайте так же:
Tl494 в стабилизаторе тока схема

Если предохранитель цел, но LED-подсветка при этом не работает, а на светодиоды подается напряжение около 12 В (равно входному напряжению VLED), то можно говорить о неисправности микросхемы ADD5201.

Интернет-ресурсы
1. ссылка скрыта от публикации

Алексей Конягин
Журнал «Ремонт и Сервис»​

Подключение светодиодов: практика

Итак, товарищи, сегодня я хочу представить продолжение предыдущей статьи про светодиоды. Надеюсь, в прошлый раз я уже убедил всех сомневающихся в том, что светодиоду нужен именно стабильный ток, а потому настало время перейти к конкретным схемам его получения — от простого и убогого к сложному и качественному.

Начнем по порядку.

1. Классика — резистор.

Подходит для маломощных (10 — 50мА) светодиодов. В более мощных случаях становится заметным низкий КПД и не особо хорошие стабилизационные возможности.

Повторю методику расчета:

Пусть среднее падение на применяемом диоде Ufw, напряжение питания U, и необходим ток диода Ifw. Тогда очевидно, что резистор должен принять на себя излишек напряжения, т.е., на нем должно падать U-Ufw вольт при рабочем токе Ifw. Откуда несложно посчитать его номинал:

Ясно, что в случае нескольких диодов Ufw заменяется на суммарное падение на цепочке.

Механизм стабилизации «на пальцах» описан в предыдущей статье. Однако, его можно объяснить и по-другому: в теории источник тока обладает бесконечным внутренним сопротивлением. Мы же здесь имеем источник напряжения, включенный последовательно с резистором. Т.е., с точки зрения диода, резистор наращивает внутреннее сопротивление источника, превращая его из источника напряжения в источник тока. Очевидно, что, чем больше резистор, тем больше такая схема похожа на идеальный источник тока и тем лучше ее параметры. Потому, еще раз, такая схема подходит только для маломощных диодов.

Перейдем к более качественным регуляторам. Но для начала я хотел бы пояснить общий принцип их действия, а для этого рассмотреть источник тока еще с одной стороны. Только что я что-то говорил про бесконечное внутреннее сопротивление — все это в согласии с теорией, никаких сомнений. Однако давайте взглянем по-другому на то, что делает источник тока: по сути, он всегда устанавливает на нагрузке такое напряжение, при котором через нее протекает заданный ток. Т.е., это источник напряжения с обратной связью по току. Таким образом, драйвер для светодиода можно сделать почти из любого стабилизатора напряжения, изменив тип его обратной связи.

2. Линейные регуляторы.

По идее, здесь должна бы быть классическая схема на LM317. Однако я хотел бы отойти от традиций и объяснить принцип работы подобного рода схем на отвлеченном примере, а заодно и проиллюстрировать все вышесказанное про обратную связь и источники тока. Кроме того, как станет очевидно, эти же принципы действуют и для импульсных схем.

Для начала разберемся с тем, как работает стандартный трехвыводной регулятор. Как подсказывает нам Капитан Очевидность, у трехвыводного регулятора имеется три вывода: вход, выход, и управляющий вход. Внутри имеется источник опорного напряжения. В процессе работы внутренняя схема сравнивает напряжение на управляющем входе с опорным, и, если опорное больше, регулятор начинает увеличивать напряжение на нагрузке. Если опорное меньше — уменьшать. При этом сам регулятор даже и не догадывается, что он стабилизатор тока или напряжения — его схема всего лишь реализует описанный алгоритм. Очевидно, что для получения желаемого эффекта стбилизации надо связать изменение напряжения на выходе и напряжения на управляющем входе с помощью какой-либо цепи. Например, если мы хотим получить постоянное напряжение, необходимо сконструировать цепь, которая будет подавать на управляющий вход напряжение больше опорного, когда выходное напряжение больше необходимого, и меньше опорного в противном случае. Очевидно, что такой цепью является обычный резистивный делитель. Собственно, классический стабилизатор напряжения на LM317:

Обычное напряжение опорного источника в LM317 — 1.25В.

Однако мы хотели стабилизировать ток. Т.е., нам нужна схема, которая будет подавать на управляющий вход напряжение меньше опорного, если выходной ток меньше заданного, и больше — если больше. Т.е., необходимо превратить изменение тока в изменение напряжения. Ясно, что здесь нам опять поможет резистор:

А теперь давайте сделаем то, что я так люблю делать — посмотрим на эту схему под другим углом. Вглядитесь, ведь здесь мы, по сути, заставляем регулятор стабилизировать напряжение на резисторе на уровне опорного (1.25В для LM317). А, поскольку резистор — линейный элемент, то при стабильном напряжении ток через него будет постоянен. Светодиод же включен последовательно со всей этой конструкцией, и потому его ток тоже будет постоянен, хотя регулятор про него ничего не знает — он просто стабилизирует напряжение на резисторе.

Из вышесказанного очевидно, что резистор можно расчитать, исходя из опорного напряжения и заданного тока:

Достоинство такого регулятора — высокая стабильность тока и простота схемы. Недостаток — низкий КПД. Кроме того, есть и чисто практическое неудобство: как нетрудно убедиться, для значительных токов (>

0.2А) расчетные номиналы сопротивлений получаются порядка десятков Ом, что создает трудности в их добыче — чаще всего приходится изготавливать оные самостоятельно, либо наматывая из, например, нихрома, либо по-разному соединяя стандартные резисторы.

3. Импульсные регуляторы.

Линейные регуляторы изменяют параметры питания нагрузки, сбрасывая излишки энергии источника на регулирующем элементе (чаще всего это транзистор). Однако существует и другой подход: сначала мы берем порцию энергии от источника, например, запасая ее в дросселе в виде магнитного поля (или в конденсаторе в виде электрического), а потом отдаем ее в нагрузку. При этом нет необходимости сбрасывать излишки, поскольку мы сразу берем энергии ровно столько, сколько ее требуется.

Читайте так же:
Регулировка напряжения тока в стабилизаторах напряжения

В соответствующей статье Википедии есть хорошая картинка:

Это один из вариантов построения импульсного преобразователя (понижающий преобразователь). Пока ключ замкнут, ток от источника протекает через катушку, и в это время в ней запасается энергия. При разомкнутом ключе индуктивность отдает накопленную энергию в нагрузку.

При всех концептуальных различиях в способе управления питанием нагрузки, алгоритм работы импульсных преобразователей не отличается от алгоритма работы линейных. Т.е., они также сравнивают напряжение на регулируюшем входе с внутренней опорой. А потому все сказанное про обратную связь в равной степени относится и к ним.

Пример. Превращаем MC34063 — импульсный стабилизатор напряжения, в драйвер светодиодов:

Вывод 5 MC34063 — тот самый управляющий вход, напряжение на котором внутри сравнивается с опорным. В принципе, его можно прямо подключить туда же, куда включен неинвертирующий вход ОУ. Очевидно, при этом надо будет пересчитать резистор обратной связи по току R1 так, чтобы напряжение на нем при заданном токе было равно опорному — те же 1.25В. Однако при этих условиях мощность, рассеиваемая на нем, будет около полуватта (при токе 350мА, для которого расчитывалась эта схема), что много. Потому для повышения КПД я поставил резистор меньшего номинала, напряжение с которого усиливается с помощью ОУ. Кстати, как нетрудно видеть, такая схема имеет еще один бонус — возможность менять ток, изменяя коэффициент усиления. Кроме того, по этой же причине для нее не важен точный номинал токоизмерительного резистора.

А вообще уже давно выпускается множество специализированных светодиодных драйверов. На самом деле, основное отличие т.н. «драйвера» от простого импульсного стабилизатора состоит в том, что тот операционный усилитель, который мне пришлось поставить отдельно для MC34063, в них уже присутствует, что и дает возможность сразу ставить резисторы малого сопротивления.

В документации на драйверы дается исчерпывающая информация относительно их применения, потому я лишь для порядка приведу пример схемы включения одного из них — ZXLD1362 (просто цитата из даташита):

Кроме того, существует класс схем на основе блокинг-генератора, применяемых для питания маломощных светодиодов от батареек в тех случаях, когда приоритетом является низкая цена — таким схемам будет посвящена моя следующая статья. Однако, стоит отметить, что для той же цели также есть интегральные драйверы.

Собственно, все. Надеюсь, этот материал поможет кому-то разобраться в вопросах питания светодиодов.

  • led,
  • solid state lighting,
  • светодиод,
  • светодиодное освещение,
  • светодиоды
  • +7
  • 07 июня 2011, 13:45
  • _YS_

Комментарии ( 22 )

Очевидно, что, чем больше резистор, тем больше такая схема похожа на идеальный источник тока и тем лучше ее параметры. Потому, еще раз, такая схема подходит только для маломощных диодов.

Продолжаешь насаждать ту же ошибку. Важно не абсолютное значение резистора, а соотношение его и нагрузки. Поэтому мощный диод через резистор работает так же, но потери на резисторе становятся неприемлемы (т.к. маломощные — как правило на вспомогательной роли и большого вклада в общее энергопотребление прибора не вносят, а мощные — в осветительных устройствах и по сути являются единственным полезным потребителем энергии). Кроме того, стабильность тока через резистор так себе, а мощные диоды более чувствительны к отклонениям и работают обычно на пределе (тогда как индикаторные — на 10-50% предела, лишь бы светились заметно на пульте) — т.к. дороги, а света надо много.

У специализированных драйверов есть еще одно отличие. Они знают, на что нагружены. Это позволяет несколько упростить схему. Так, например, HV9961 стабилизирует средний ток диодов, хотя резистор включен в первичной цепи, где ток совершенно другой и зависит не только от выходного, но и от разницы входного и выходного напряжения. И тем не менее, оно работает — т.к. HV9961 несколько иначе обрабатывает получаемую с резистора информацию о токе.

Алсо, по импульсникам — стоило бы сделать ссылки на статьи Di Halt’а, где он на пальцах и канализации объясняет, как работают step-up и step-down конвертеры.

Светодиодный драйвер: принцип работы и правила подбора

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

  1. Что такое драйвер и каково его назначение?
  2. Основные особенности
  3. Технические характеристики
  4. Срок годности
  5. Как подобрать драйвер?
  6. Виды драйверов

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

Читайте так же:
Lm317 в мощном стабилизаторе тока

КПД импульсного драйвера для светодиодов достигает 95%

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.

Дешевый светодиодный драйвер

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P(led) – мощность одного LED-элемента;

n — количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.

Подключение светодиодов к драйверу

Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами — до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов — до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.

Светодиодный драйвер без корпуса

Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе. Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Импульсный драйвер

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток — во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector