Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Датчика тока в стабилизаторах тока

Как работают датчики и токовые клещи для измерения постоянного и переменного тока

Для расширения функционала мультиметров, осциллографов и других электроизмерительных инструментов, применяются токовые датчики в форме клещей — токовые клещи. Для проведения измерений клещами, их смыкают в обхват проводника с током, и таким образом, без разрыва цепи и без необходимости врезания в проводник какого бы то ни было шунта, осуществляют замер.

Это просто и удобно. Результат измерения прибор отображает на своей шкале в виде напряжения или тока пропорциональной измеренному току величины. Достоинство метода заключается еще и в том, что прибор может и не иметь достаточно широкого входного диапазона, тогда как датчик — клещи вполне в состоянии свободно принять проводник даже с очень большим током.

Проводник с измеряемым током не только остается целым, но и всегда гальванически изолирован от цепей измерительного прибора. Сам же прибор может иметь входную цепь с очень высоким импедансом и даже быть заземлен. Здесь нет необходимости как-то регулировать или включать и выключать питание цепи, параметры которой измеряются клещами, а значит в работе питаемого оборудования не будет простоев.

Среднеквадратичное значение тока в диапазоне частотных характеристик датчика можно измерить при совместном использовании токового датчика с мультиметром, способным измерять среднеквадратичные значения. В данном случае диапазон будет ограничен возможностями (шкалой) мультиметра. Лучшие результаты достигаются с датчиками обладающими широкой частотной характеристикой, минимальным фазовым сдвигом и высокой точностью.

Для измерения параметров переменного тока используются датчики, работающие по принципу обычного измерительного токового трансформатора. Любой трансформатор имеет первичную и вторичную обмотки, установленные на общем магнитопроводе. Первичное напряжение подается на первичную обмотку, в сердечнике создается переменный магнитный поток, наводящий во вторичной обмотке соответствующую коэффициенту трансформации ЭДС. Токи первичной и вторичной обмоток соотносятся как количества витков во вторичной и первичной обмотках.

Так и работает токовый датчик для измерения переменного тока. Магнитопровод в форме клещей замыкается вокруг проводника. Проводник — это первичная обмотка, состоящая из одного единственного витка, значение тока в котором необходимо узнать.

Ток во вторичной обмотке будет пропорционален току в проводнике и отличаться от него в число раз, равное коэффициенту трансформации, то есть во столько раз, сколько витков во вторичной обмотке. Количество витков во вторичной обмотке датчика обычно 1000, 500 или 100.

Если датчик имеет 1000 витков, то клещи имеют обозначение 1000:1 или 1мА/А — это значит что 1 мА в показаниях прибора тождественен 1А в исследуемом проводнике. Или 1А на приборе — 1000 А в проводнике.

Соотношение может быть в принципе и другим: 3000:5 или 2000:2, в зависимости от назначения прибора. Однако в большинстве случаев клещи работают в паре с обычным мультиметром и соотношение, как правило, 1000:1.

При соотношении 1000:1 или 1мА/А показания прибора будут такими. При входном токе в 700А выходные показания окажутся 700мА, при 300А — 300мА и т. д. Так происходит потому, что выход датчика присоединяется к цифровому мультиметру в режиме измерения переменного тока с выбранным диапазоном значений.

Для определения действующей величины тока в проводнике, показания мультиметра умножаются на коэффициент датчика. Главное — чтобы измерительный прибор имел требуемое входное сопротивление.

Если измерительный прибор имеет вход только по напряжению (вольтметр или осциллограф), то он также может использоваться с токовым датчиком — клещами. Для этого токовый выход датчика необходимо согласовать с входом прибора, применив принцип измерительного трансформатора тока. Тогда показания переменного напряжения будут пропорциональны измеряемому переменному току.

Существуют токовые клещи, способные измерять не только переменный, но и постоянный ток. В таких клещах принцип их работы основан на эффекте Холла, когда параметры тока выводятся из параметров порождаемого им магнитного поля, воздействующего на полупроводник и инициирующего в нем эффект Холла.

Тонкая пластинка полупроводника устанавливается перпендикулярно магнитному полю тока, который требуется измерить. На пластинку в определенном направлении (допустим вдоль нее) подается ток возбуждения, который отклоняется во внешнем магнитном поле под действием силы Лоренца в поперечном направлении, и тогда в этом направлении на краях пластинки можно измерить ЭДС (напряжение Холла).

При постоянном токе возбуждения через пластинку, ЭДС Холла, как и индукция магнитного поля измеряемого тока, будут пропорциональны измеряемому току. То есть напряжение Холла соответствует току в проводнике, который проходит внутри магнитопровода датчика. Такая схема имеет большие преимущества перед устройствами на базе трансформатора тока.

Поскольку генерация ЭДС Холла не зависит от направления вектора магнитной индукции, а зависит только от его величины, датчик на основе эффекта Холла измеряет как переменный, так и постоянный ток. К тому же датчик абсолютно точно фиксирует фазу изменения (направления) магнитного поля, а значит пригоден для наблюдения формы тока.

Клещи с датчиком Холла бывают с одним либо с двумя встроенными датчиками. Различные модели клещей обладают широким динамическим диапазоном и частотной характеристикой, линейностью сигнала и высокой точностью.

Читайте так же:
Феррорезонансных стабилизаторах переменного тока

Область применения таких клещей охватывает всё оборудование с постоянным током до 1500 А без необходимости встраивания дорогих шунтов. Переменный ток частотой в десятки килогерц также измерим при помощи клещей на базе эффекта Холла, причем форма тока может быть самой разной, среднеквадратичное значение будет найдено.

Выходной сигнал в милливольтах, пропорциональный измеренному току, может быть легко воспринят большинством мультиметров, осциллографов и самописцев.

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Датчик тока для Ардуино ACS712

При конструировании различных систем измерения и контроля может потребоваться измерить ток, протекающий по проводнику. Встроенными средствами аппаратной платформы Arduino низкое постоянное напряжение можно измерить без каких-либо проблем, а вот ток так просто измерить не получится. Одним из специальных датчиков, предназначенных решить данную проблему, является датчик тока ACS712, эти датчики бывают рассчитаны на различные максимальные значения измеряемого тока, в данном случае автор использовал датчик на 20А. Физически работа этого устройства основана на эффекте Холла. Данный эффект заключается в том, что носители электрического тока при движении вдоль проводника, помещенного в поперечное магнитное поле испытывают на себе действие силы Лоренца и отклоняются в сторону. Из за этого на боковых, по отношению к направлению тока, сторонах проводника возникает разность потенциалов, которую можно измерить [1-2]. Датчик приобретен здесь всего за 100 рублей:

Устройство поставляется в антистатическом пакете

На печатной плате устройства хорошо видна клеммная колодка для подключения контролируемой цепи.

Габариты платы датчика 31 х 13 х 12 мм, масса 3,1 г.

Подключение датчика ACS712

На плате расположен 3-х контактный разъем.

  • Vcc – контакт для подачи питающего напряжения +5В,
  • OUT – контакт для снятия результатов измерения,
  • GND – общий провод.

На плате датчика имеется красный светодиод – индикатор питания. Сопротивление токовой шины 1,2 мОм [3-5], напряжение питания 5 В, ток потребления составляет около 12 мА.

Тестирование токового датчика

Автор обзора приобрел версию датчика рассчитанную на ток до 20 А, и это в целом было ошибкой. В радиолюбительской практике все же довольно редко приходится иметь дело с подобными значениями силы тока, так что более рациональным было бы приобретение версии рассчитанной на 5 А, так как у нее разрешение 185 мВ/А, против 100 мВ/А у 20А версии. Тем не менее, и данную версию можно использовать, но точность у нее ниже при измерении токов порядка 1 А.

Для тестирования можно использовать программу AnalogInput2 [6], на ее основе не сложно написать код для измерения значения силы тока, протекающей через датчик и вывода этих данных в удобном виде в монитор последовательного порта. При отсутствии тока на выходе датчика присутствует напряжение примерно в половину от напряжения питания, так, что встроенный АЦП Arduino вернет значение около 512.

В опытах по тестированию данного модуля использован блок питания, дающий напряжение 5 В, который согласно маркировке рассчитан на максимальный ток 2 А. При подключении одного резистора сопротивлением 10 Ом, ток через датчик составляет примерно 0,47 А.

При этом АЦП возвращает значение около 504.

При подключении параллельно первому резистору второго резистора с аналогичным сопротивлением, общее сопротивление потребителя составит 5 Ом, при этом амперметр показывает значение силы тока около 0,9 А.

При этом АЦП возвращает значение около 496.

Как известно встроенный АЦП Arduino UNO является 10 разрядным, т.е. диапазону напряжений от 0 до 5 В ставится в соответствие двоичное число от 0 до 1023. Таким образом, разрешение АЦП составляет примерно 0,0049 В. Как следует из приведенных выше данных току в 0,47 А соответствует напряжение 2,46 В, а току 0,9 А – 2,42 В, т.е изменению тока на 0,43 А соответствует изменение напряжения на 40 мВ, что вполне соответствует заявленным продавцом 100 мВ/А.В целом рассмотренный датчик заданные функции выполняет вполне успешно, устройство своих денег стоит.

Ссылки по теме

  1. radioprog.ru/post/99
  2. elenergi.ru/effekt-xolla.html
  3. arduino.ru/forum/programmirovanie/datchik-toka-acs712
  4. www.drive2.ru/b/456815746333278890/
  5. 3d-diy.ru/wiki/arduino-datchiki/datchik-toka-acs712/
  6. robocraft.ru/blog/arduino/59.html

Файлы проекта тут. Обзор сделал специально для сайта «2 Схемы» — Denev.

— РТН-2 регистратор напряжения и тока 3-х фазной сети

РТН-2

Аварийный индикатор-регистратор
напряжения и тока.

Индикатор — регистратор напряжения и тока трехфазной сети переменного тока РТН-2, представляет собой программируемое, микропроцессорное, стационарное устройство, монтируемое на DIN-рейку. Регистратор РТН-2 является шести канальным прибором с тремя «ВХОДАМИ» по измерению напряжения от 160 до 300В и тремя «ВХОДАМИ» для подключения измерительных трансформаторов тока до 500А. Установлены 2 сигнальных реле аварийных событий по току и напряжению. На цветном ЖК-индикаторе прибора постоянно отображаются измеренные значения тока и напряжения одновременно по 3-м фазам. Производится запись в архив момента аварийного выхода напряжения и тока по всем входам с привязкой к реальному времени за программируемые пользовательские диапазоны уставок. Просмотр архива записанных событий на ЖК-индикаторе. Питание прибора от контролируемой сети. Встроенные энергонезависимые часы реального времени, позволяющие отследить день и время аварии. Программируемые уставки. Энергонезависимая память настроек и архива.
Регистратор соответствует требованиям безопасности по ГОСТ Р 51350 класс защиты 0, ГОСТ 12.3.019-80, ЭМС по ГОСТР50033.92.

Читайте так же:
Стабилизатор в цепи переменного тока

Преимущества регистратора РТН-2.

Разработчики, для сохранения доступной цены, постарались вложить в прибор только тот функционал, который действительно требовался потребителям. Аварийный регистратор напряжения и тока трехфазной сети РТН-2 получился не перегруженный опциями, имеет простые режимы программирования и считывания информации. Встроенный, в переднюю панель, цветной ЖК-индикатор дает возможность в любой момент, без переключений, определить состояние контролируемых вводов и наличие записанных событий. Программируемые уставки срабатывания позволяют создавать комфортные режимы архивирования, не перегружая память регистратора. Запись в архив производится в момент перехода напряжения или тока за диапазон программируемых уставок и если импульс продолжительностью не менее 100 мс. Выходы сигнальных реле позволят реализовать оперативное оповещение об аварийных ситуаций. Настройки закрываются паролем. Энергонезависимость архива по часам реального времени, настроек — выделили, автономность устройства.

Подключение и настройка РТН-2.

В случаях, когда не планируется использовать токовые входы ТТ1, ТТ2 и ТТ3, или будут использоваться не все, на исключаемые, устанавливаются перемычки. Амплитудное значение тока не должно превышать 10А. Максимальное напряжение на входах L1, L2, L3-N не должно превышать 300В.
После окончания монтажа — подают напряжения, на ЖК индикаторе прибора отобразятся текущие измеренные значения напряжения, тока и время. (см. Рис.2)

Далее необходимо произвести программирование РТН-2.
Программируемые параметры:
нижний порог напряжения. Значение, при котором дальнейшее снижение напряжения считается не допустимыми записывается как событие;
верхний порог напряжения. Значение, при котором дальнейшее увеличение напряжения считается не допустимым и записывается как событие;
верхний порог тока нагрузки. Значение, при котором дальнейшее увеличение тока считается не допустимым и записывается как событие;
I1паспортное значение первичного тока трансформатора тока;
ДАТАдд.мм.гг
ВРЕМЯчч.мм.сс

На передней панели расположены 4 кнопки для управления режимами работы регистратора «-», «+», «Ввод», «Уст.».
« Уст. » — вход в режимы программирования и просмотра уставок.
« Ввод » — вход в режим просмотра записей архива аварийный событий, подтверждение изменений.
« », « + » — кнопки управления внутри режимов. (пролистывание; перемещение курсора; увеличение-уменьшение).
Описывать порядок программирования не имеет смысла – он прост, даже без прочтения инструкции, интуитивно.
Важно помнить, что программирования уставки по току производить только с отключенной нагрузкой. Уставка по току (Iв) одинакова для трех входов ТТ1, ТТ2, ТТ3. Уставка по напряжении (Uв-Uн) одинакова для трех входов L1, L2, L3-N.
При аварийном событии по току, включается реле Р1, при аварии на входах напряжения сработает реле Р2.

Просмотр записей архива регистратора напряжения и тока РТН-2.

Когда на ЖК-индикаторе регистратора РТН-2, в левом верхнем углу, появится символ звездочка « * », это будет означать, что в архиве есть запись отклонения напряжения или тока за диапазон уставок. Нажимаем кнопку «Ввод», на дисплее высветится последняя запись события аварийной ситуации по току или напряжению, дата и время аварии (См. Рис.3, Рис.4).

Просмотр события по напряжению:

Просмотр события по току:

В архив, при аварии, записываются показания с трех входов одновременно. Аварийное значение будет мигать над символом входа (L1, L2, L3), на котором произошла авария. Пролистывая события кнопкой «-», можно просмотреть события до первой записи архива. Просмотренные события можно удалять клавишой Если при просмотре архивных событий появилась необходимость сравнить записанное событие с уставкой, нажимаем кнопку «Уст.», при этом на индикаторе высветятся (См. рис.5): Uн — нижний порог напряжения и Uв — верхний порог напряжения или Iв — верхний порог тока и Iр — первичный ток трансформатора тока, в зависимости от того какой вид аварии, по току или напряжению, отображается на индикаторе.

Технические характеристики РТН-2.

Токоизмерительные клещи постоянного и переменного тока, чем они отличаются и какие лучше всего выбрать

Назначение прибора и его преимущество

Токоизмерительные клещи или «Клещи Дитце»-это измерительный прибор, назначение которого измерять ток бесконтактным способом, без разрывы электрической цепи. Главным преимуществом перед остальными мультиметрами и амперметрами является простота измерения и безопасность использования, так как измерение возможно проводить на изолированном проводнике. С помощью данного устройство можно легко определить точные показатели электрического тока, а также рассчитать потребляемую мощность любого электрооборудования под нагрузкой.

Принцип действия и функциональность

Принцип работы прибора основан на законе электромагнитной индукции, по устройству в значительной степени схож с принципом действия обыкновенного трансформатора. Переменный ток измеряемого проводника внутри катушки трансформатора (Клещей) создает переменный магнитный поток, индуктирующий ЭДС во вторичной обмотке устройства, который замеряется амперметром или датчиком.

Схема измерения силы тока прибором с трансформаторным датчиком

В более современных устройствах применен полупроводниковый датчик Холла, основным отличием от устройства с трансформатором является то, что измеряемый проводник охватывается не замкнутой катушкой, а магнитопроводом, в разрыве которого размещен датчик Холла.

Схема измерения силы тока прибором с датчиком Холла

Современные приборы в зависимости от типа способны измерять переменный или постоянный и переменный ток (благодаря использованию датчика Холла), большинство из них обладают расширенным функционалом мультиметров и способны выводить численную информацию на дисплей. В зависимости от марки и производителя в измерителях реализовано множество дополнительных функции и конструктивных решений.

Читайте так же:
Стабилизатор напряжения по частоте тока

Типы приборов

Существует два типа устройств, основным различием которых являются измерительные датчики:

  1. Cэлектромагнитным датчиком. Способны измерить только переменный ток. Клещи-трансформатор такого инструмента представляют из себя размыкающийся магнитопровод со вторичной катушкой, замыкающейся на измерительном датчике.
  2. Cполупроводниковым датчиком Холла. Данный тип устройства способен измерять постоянный или переменный ток.

Токовые клещи с датчиком Холла, без замыкающегося магнитопровода

Виды исполнения

Измерители «дитца» подразделяются на аналоговые и цифровые:

  • Аналоговые измерители. Как правило способны измерять только переменный ток, показания в них снимаются со встроенного амперметра. Такие приборы были широко распространены до появления цифровых измерителей.

  • Цифровые (самые популярные). Внутри таких приборов установлена интегральная схема, как правило они обладают расширенным функционалом или дополнительными функциями мультиметра (тестера).

Специализированные высоковольтные электроизмерительные клещи

В отдельный вид следует выделить измерители специального назначения, измерительные клещи Ц 90 (более современный вариант Ц 4502), предназначенные для измерения силы тока в мощных электроустановках до 10 000 вольт. С помощью этого инструмента можно измерить только силу переменного тока от 15 до 600А. Принцип действия измерителя аналогичен с обычными измерителями трансформаторного типа, конструкция таких клещей немного видоизменена для безопасной работы оператора. В конструкции предусмотрены изолирующая часть с изолирующими рукоятками, а также разработаны правила безопасности при проведении измерений данным способом.

Порядок проведения измерения

Перед началом проведения измерений необходимо определить место измерения, подготовить прибор к работе, перевести поворотный переключатель в нужное положение. Если сила тока неизвестна, то необходимо установить максимальное значение диапазона, далее во время измерения поэтапно снижать показатель для более точного результата. Устройства с датчиком Холла, из-за его чувствительности к магнитным полям, перед измерением необходимо обнулить, нажав соответствующую кнопку «SEL» или аналогичную «REL».

Перед тем как начать пользоваться измерителем, изучите инструкцию пользователя:

  • Инструкция по эксплуатации токоизмерительных клещей Mastech m266. Скачать Pdf
  • Руководство по эксплуатации. Паспорт Mastech M266, M266C, M266F. Скачать Pdf

Порядок проведения измерения:

  1. Подготовьте прибор и выберите место измерения.
  2. Переведите поворотный переключатель в нужное положение, далее переместите измеряемый проводник в скобу устройства.

  1. Снимите показания с дисплея, при необходимости сохраните данные в памяти измерителя. Лучше всего силу тока мерить несколько раз для получения более точного результата.

  1. Для более точного результата или для измерения малой силы тока, если это позволяет измеряемый проводник, сделайте несколько витков вокруг клещей. Полученный результат измерения поделите на количество витков, в результате вы получите уточненное значение измерения.

Функции и конструктивные особенности

Электроизмерительные клещи отличаются электротехническими характеристиками, диапазоном измерений, точностью измерений и дополнительным функционалом. К основным функциям приборов относятся:

  • Амперметр
  • Вольтметр
  • Ваттметр
  • Фазометр
  • Ампервольтметр

В большинстве устройств реализованы дополнительные функции тестера – мультиметра, на которые следует обращать внимание при выборе устройства:

  • измерение сопротивления, частоты, изоляции
  • проверка диодов
  • звуковая прозвонка
  • определение температуры
  • функция измерения нагрузочных бросков пускового тока

Проведение измерения пускового тока на автомобильном аккумуляторе

Более продвинутые версии приборов оснащены дополнительными вспомогательными элементами, помогающими проводить более точные измерения или измерять в труднодоступных местах, к таким относятся:

  • двойной датчик Холла (более точные измерители)
  • измерители с выносными клещами
  • Токовые клещи со съемным дисплеем
  • Гибкий токоизмерительный датчик
  • Увеличенный зажим клещей
  • Провода-щупы, «Крокодильчики»

Устройство со съемными клещами

Стоимость цифровых измерительных клещей в зависимости от характеристик

В зависимости от цены все приборы можно разделить на эконом-сегмент в ценовом диапазоне от 4 000 до 15 000 рублей и профессиональные стоимостью от 15 000 до 60 000 рублей. Так как большинство приборов имеет расширенный функционал независимо от цены, сравнение проводилось исходя из основных характеристик приборов и их прямого назначения.

Основные характеристики устройств в зависимости от ценового сегмента

Эконом-сегментПрофессиональные
Диапазон измерений
Постоянное напряжениеот 0,1 до 750Вот 0,01 до 1000В
Переменное напряжениеот 0,1 до 750Вот 0,01 до 1100В
Постоянный токот 0,1 до 1000Аот 0,001 до 2000А
Переменный токот 0,1 до 1000Аот 0,001 до 2000А
Погрешность
Базовая погрешность1,5 – 4,0%0,5 – 1,5%

Как выбрать токовые клещи

При выборе устройства в первую очередь необходимо руководствоваться задачами, которые вы перед ним ставите. Если вам нужно проводить замеры только переменного тока, то присмотритесь к моделям с электромагнитным датчиком, они менее дорогие и отлично выполняют свою функцию с высокой точностью.

Для домашнего использования лучше подойдут недорогие универсальные токоизмерители – тестеры с датчиком Холла, такие устройства способны полноценно заменить обычный мультиметр «цешку» в быту и обязательно должны быть у каждого электрика.

Для профессионального использования необходимо рассматривать приборы в более дорогом ценовом сегменте, поверенные и зарегистрированные в Госреестре СИ. Такие приборы способны выдавать максимально точный результат, как правило они оснащены вспомогательными элементами, такими как выносные клещи или двойной датчик Холла.

Читайте так же:
Кпд импульсного стабилизатора тока

Приборы профессионального назначения измеряют в более широком диапазоне, способны мерить с наименьшей погрешностью. Зачастую такие устройства способны проводить расчеты без подключения к компьютеру, имеют множество других полезных функций, а также у таких устройств в комплекте предусмотрен чехол либо сумка. Из известных производителей можно выделить: Mastech, MULTI, Uni Trend, Fluke, APPA, АКИП, МЕГЕОН.

Рекомендуем к просмотру:

  • Как выбрать ИБП для компьютера
  • Как лучше всего соединить медный и алюминиевый…
  • Как самому выбрать экономичный электрообогреватель для дома
  • Какой провод лучше использовать в сварочном…
  • Как правильно называется машина для тока с большим…
  • Все о силе тока в физике

Электронная нагрузка — тестер аккумуляторов 60 Вт, 0-30 В, 0-9.99 А

Краткое описание

Электронная нагрузка 60Вт 30В 10А с функцией теста емкости аккумуляторов ( ZPB30A1) Электронная нагрузка – устройство, основное назначение которого, нагружать источники питания для проверки их характеристик и разряжат. Читать далее.

    Доступность: Нет в наличии 0

Оплата

Узнайте как оплатить!

Наложенный платеж

Оплата заказа после его получения

Доставка Новой Почтой

Стоимость доставки оплачивает получатель

Банковский перевод

Предоплата переводом на карту Приватбанка

  • Описание
  • Отзывы (0)
  • Вопрос — ответ (0)

Электронная нагрузка 60Вт 30В 10А с функцией теста емкости аккумуляторов ( ZPB30A1)

Электронная нагрузка – устройство, основное назначение которого, нагружать источники питания для проверки их характеристик и разряжать аккумуляторы для определения их реальной емкости. Электронная нагрузка представляет собой испытательное оборудование с двумя режимами работы: проверка емкости аккумуляторов и проверка характеристик блоков питания. Устройство имеет несколько видов защит, таких как, защита от перегрева, защита от подключения с обратной полярностью и другие, также может автоматически ограничивать ток, при превышении максимальной допустимой мощности. Для работы нагрузки необходим отдельный внешний источник питания с напряжением 12 Вольт, способный обеспечивать ток не менее 0,5 Ампера.

Особенности:

  • Выбор одного из двух режимов работы: режим электронной нагрузки или режим проверки емкости аккумулятора.
  • Большой радиатор с активным охлаждением, регулировка скорости вращения в зависимости от температуры радиатора
  • Светодиодная индикация, отображающая текущие характеристики
  • Удобное управление с помощью энкодера
  • Зуммер
  • Функция автоматического сохранения: может сохранять параметры конфигурации при отключении питания; восстановить все параметры и состояние после включения питания.
  • Защита: защита от перегрева, защита от перегрузки, защита от превышения напряжения, защита от обратной полярности и контроль напряжения источника питания.
  1. Данная нагрузка может работать как тестер аккумуляторов считая емкость и энергоемкость, при этом напряжение меряется автоматически схемой (за вычетом падения на проводах подключения) или автоматически переключается на измерение с помощью дополнительного провода (если он подключен). Во время измерения нагрузка показывает на нижнем индикаторе текущий ток, а на верхнем ( переключаясь емкость и энергоемкость к данному моменту ). По окончанию можно просмотреть оба параметра.
  2. Так же она может работать в режиме только нагрузки. Плюс данного режима в том, что она показывает ток на нижнем индикаторе и напряжение на верхнем (при этом на верхнем индикаторе показывается только напряжение), что довольно удобно можно видеть “просадку” напряжения при изменении тока. В таком режиме она не меряет реальное напряжение на нагрузке через дополнительный кабель, а только напряжение, попадающее на схему нагрузки через подключаемые провода, таким образом напряжение измеряется не точно, учитывая падение на подключаемых проводах.
  3. Переключение режимов осуществляется зажатием кнопки «старт» при включении.
  4. Требования к источнику питания ограничиваются мощностью встроенного вентилятора. При старте нагрузка раскручивает его на максимум. Если напряжение “просядает” ниже положенного, то выводится ошибка. Поэтому нужен БП 12В выдающий минимум 0,2А-0,3А иначе нагрузка не включится.
  5. Ток задается от 0,2А до 10А с шагом либо 0,1 либо 0,01 (шаг выбирается нажатием на ручку энкодера).
  6. Мощность автоматически ограничивается снижением тока нагрузки.

Требования к источнику питания:

  • Постоянное напряжение 12V напряжение (варьируется в пределах 11-14V )
  • Ток не менее 0,5 А
  • В случае несоответствия заданным требованиям – на экран будет выводится сообщение: ERR6
  • Блок питания в комплект не входит.

Технические характеристики:

  • Режим работы: CC – Constant Current, режим постоянного тока
  • Ток разряда: 0.20-9.99A с шагом 0.1 А или 0.01A
  • Максимальная погрешность тока разряда: 0,7% -0.01A
  • Максимальная погрешность теста емкости: 0.5A 2,5%, 1,5% 2A, 5A и выше 1,2%
  • Напряжение отсечки (прекращения работы): от 1.0 В до 25.0В с шагом 1V или 0,1 V
  • Диапазон напряжения разряда: 1.00В-30.00В
  • Максимальная погрешность измерения напряжения: 1% + — 0,02 В
  • Максимальная мощность: 60 Вт
  • Автоматическое ограничение максимального тока при достижении максимальной мощности, например, до 3А, при напряжении 20 В.
  • Максимальные значения для тестирования емкости аккумуляторов:: 999.9Ah или 9999Wh, остановка тестирования при достижении установленного порога (при достижении минимального из этих двух значений, тест прекращается)
  • Управление вентилятором осуществляется в автоматическом режиме
  • Размер платы: 100 мм Х 70мм Х 57мм
  • Размер вентилятора: 50 * 50 * 15 мм
  • Общий размер: 105 * 70 * 55 мм
  • Вес: 175 грамм
Читайте так же:
Стабилизатор постоянного тока что это

Защита:

  • Защита от перегрева «otP»
  • Защита от перезаряда «oPP»,
  • Защита от превышения напряжения «ouP»
  • Защита от неправильной полярности
  • Защита источника напряжения питания

Инструкция по эксплуатации электронной нагрузки:

1. Настройка
Настройка устройства (по умолчанию включен режим электронной нагрузки)
Подключить к прибору блок питания, держа нажатой кнопку старт-стоп (красная кнопка) до вывода на дисплей надписи » Fun*». Далее вращением ручки, установить нужный режим:
«Fun1 » — режим электронной нагрузки, «Fun 2 » – режим теста емкости аккумулятора.

Нажмите кнопку старт-стоп до сигнала зуммера для сохранения настроек — установленный режим будет активирован при каждом следующем включении прибора, пока не будет сменен (так же прибор запоминает выставленные значения напряжения и тока, но не запоминает режим биппера).
Также, для настройки зуммера, поворотом ручки, установите режим
«bEon» – зуммер включен, «bEoF» – зуммер выключен.

2. Режим электронной нагрузки:
Подключите к прибору источник питания 12V, тестер загрузится в режиме электронной нагрузки, в остановленном состоянии («RUN» не горит, в противном случае нажмите на кнопку старт-стоп, чтобы выключить нагрузку).
Подключите испытуемый источник питания к тестовому порту (P + P — ) с соблюдением полярности подключения.

Установка значения тока и напряжения: Поверните ручку настройки чтобы установить значение текущего тока, сначала в целых, а после нажатия на ручку потенциометра — в десятых долях Ампер. О разрядности свидетельствует один из двух светодиодов, которые находятся между цифровыми индикаторами. О режиме настройки — один из боковых индикаторов с соответствующей подписью. Значение тока — устанавливается на нижнем индикаторе, напряжения — не верхнем.

После этого, аналогично надо установить значение нижнего допустимого порога напряжение — по достижении которого нагрузка отключится.

Нажмите кнопку старт-стоп, для старта работы нагрузки, после чего активируется красный диод с подписью «RUN».

Установленное значение тока разряда применяется к проверяемому источнику питания. В это время на верхнем дисплее будет отображаться фактическое входное напряжения тестируемого источника питания, когда напряжение падает ниже установленного предела диод «RUN» будет мигать одновременно с звуковым сигналом тревоги зуммера.
В ходе теста, ручкой потенциометра можно изменять значение нагрузочного тока, для изменения нижнего порога напряжения — нужно остановить тест кнопкой старт и установить нужное значение.

3. Режим тестирования емкости аккумулятора:

Перед началом тестирования, аккумуляторы должны быть заряжены при помощи соответствующего зарядного устройства.
Установите прибор в режим тестирования емкости аккумулятора, подключите контакты аккумулятора к разъемам тестового порта тока (P + P — ), если вы используете 4х проводный фиксатор аккумуляторов, то вторую пару проводов нужно подключить к тестовому порту напряжения ( V + V -).

Поверните ручку, чтобы установить ток разряда — целые, и десятые значения, аналогично тому как это было описано для режима электронной нагрузки. А так же напряжение разряда при котором нагрузка будет отключена, после ввода установок (они так же запоминаются), нажать кнопку старт.

После старта прибор автоматически определит режим работы 2-4 линии, при 2 линиях режим JS-2, при 4х — JS-4, в случае некорректного подключения – ERROR.

В случае ошибки остановите тест и проверьте проводку, и начните тест сначала.

В процессе тестирования, нижний индикатор прибора показывает текущий ток (режим CC), а верхний — по кругу будет выводить значения

  • текущего напряжения аккумулятора в Вольтах
  • Емкости в Ач
  • Количество отданной энергии в Вч.

После достижения минимального напряжения, прибор отображает данные в Ач, которые будут быстро мигать сопровождаемые сигналом зуммера.

Нажмите кнопку старт-стоп или на кнопку энкодера на ручке, чтобы выключить зуммер. Далее можно повернуть ручку, чтобы посмотреть данные разряда:

  • Емкость разряда Ач (на фото выше)
  • Энергию разряда Wh
  • Напряжение разряда V

Нажмите кнопку старт-стоп для сброса установок и возврата в исходные параметры настройки.

Дополнительная информация:

1. В процессе тестирования аккумулятора можно регулировать ток разряда, а если вам нужно перенастроить значение напряжения разряда, то можно приостановить процесс, нажав кнопку старт-стоп и изменить значение. При паузе прибор вернется на страницу настроек, но данные по процессу тестирования не теряются, если необходимо, вы можете долгим нажатием кнопки старт-стоп очистить данные до 0.000Ah).

2. Тестер автоматически сохраняет настройки параметров, и состояние процесса тестирования, в случае отказа источника питания, или отключения электричества, при возобновлении питания все данные восстанавливаются автоматически.

Коды неисправностей:

  • Err1: превышения значения емкости аккумулятора.
  • Err2: напряжение аккумулятора меньше нижнего предела, отсутствие напряжения на батарее, ошибка полярности подключения.
  • Err3: Слишком высокое сопротивление на подключенной цепи., или аккумулятор не способен отдавать установленный ток заряда
  • Err4: Ошибка цепи.
  • ERR6: Ошибка источника питания – напряжение питания должно быть 12 не менее 0,5А
  • otP: защита от перегрева.
  • Ert: неисправность датчика температуры или температура слишком низкая
  • ouP: напряжение слишком высоко, режим электронной нагрузки.
  • oPP: превышение мощности в режиме электронной нагрузки

Комплект поставки:

  • 1 * Электронная нагрузка — тестер аккумуляторов 60 В
голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector