Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое тепловое действие электрического тока в физике

Тепловое действие тока: закон Джоуля-Ленца, примеры

Двигаясь в любом проводнике, электрический ток передает ему какую-то энергию, из-за чего проводник нагревается. Энергетическая передача осуществляется на уровне молекул: в результате взаимодействия электронов тока с ионами или атомами проводника часть энергии остается у последнего.

Тепловое действие тока приводит к более быстрому движению частиц проводника. Тогда его внутренняя энергия возрастает и трансформируется в тепловую.

Формула расчета и ее элементы

Тепловое действие тока может быть подтверждено разными опытами, где работа тока переходит во внутреннюю проводниковую энергию. При этом последняя возрастает. Затем проводник отдает ее окружающим телам, то есть осуществляется теплопередача с нагреванием проводника.

Формула для расчета в этом случае следующая: A=U*I*t.

Количество теплоты можно обозначить через Q. Тогда Q=A или Q=U*I*t. Зная, что U=IR, получается Q=I 2 *R*t, что и было сформулировано в законе Джоуля-Ленца.

Закон теплового действия тока — закон Джоуля-Ленца

Проводник, где протекает электрический ток, изучали многие ученые. Однако, самых заметных результатов удалось добиться Джеймсу Джоулю из Англии и Эмилию Христиановичу Ленцу из России. Оба ученых работали отдельно и выводы по результатам экспериментов делали независимо один от другого.

Они вывели закон, позволяющий оценить тепло, получаемое в результате действия тока на проводник. Его назвали законом Джоуля-Ленца.

Рассмотрим на практике тепловое действие тока. Примеры возьмем следующие:

  1. Обычную лампочку.
  2. Нагревательные приборы.
  3. Предохранитель в квартире.
  4. Электрическую дугу.

Лампочка накаливания

Тепловое действие тока и открытие закона способствовали развитию электротехники и увеличению возможностей для использования электричества. То, как применяются результаты исследований, можно рассмотреть на примере обычной лампочки накаливания.

Она устроена таким образом, что внутри протягивается нить, изготовленная из вольфрамовой проволоки. Этот металл является тугоплавким с высоким удельным сопротивлением. При проходе через лампочку осуществляется тепловое действие электрического тока.

Энергия проводника трансформируется в тепловую, спираль нагревается и начинает светиться. Недостаток лампочки заключается в больших энергетических потерях, так как лишь за счет незначительной части энергии она начинает светиться. Основная же часть просто нагревается.

Чтобы лучше это понять, вводится коэффициент полезного действия, который демонстрирует эффективность работы и преобразования в электроэнергию. КПД и тепловое действие тока используются в разных областях, так как имеется множество устройств, изготовленных на основании этого принципа. В большей степени это нагревательные приборы, электрические плиты, кипятильники и другие подобные аппараты.

Устройство обогревательных приборов

Обычно в конструкции всех приборов для нагревания есть металлическая спираль, в функцию которой и входит нагрев. Если нагревается вода, то спираль устанавливается изолированно, и в таких приборах предусматривается соблюдение баланса между энергией из сети и тепловым обменом.

Перед учеными постоянно ставится задача по снижению энергетических потерь и поиску лучших путей и наиболее эффективных схем их внедрения, чтобы уменьшить тепловое действие тока. Используется, например, способ повышения напряжения во время передачи энергии, благодаря чему сокращается сила тока. Но такой способ, в то же время, понижает безопасность функционирования линий электропередач.

Другим исследовательским направлением является выбор проводов. Ведь именно от их свойств зависят потери тепла и другие показатели. Кроме того, при работе нагревательных приборов происходит большое выделение энергии. Поэтому спирали изготавливаются из специально предназначенных для этих целей, способных выдержать высокие нагрузки, материалов.

Читайте так же:
Тепловое действие тока практическое использование в строительстве

Квартирные предохранители

Чтобы улучшить защиту и обезопасить электрические цепи, используются особые предохранители. В роли главной части выступает проволока из легкоплавкого металла. Она проходит в пробке из фарфора, имеет винтовую нарезку и контакт в центре. Пробку вставляют в патрон, расположенный в фарфоровой коробке.

Свинцовая проволока является частью общей цепи. Если тепловое действие электрического тока резко возрастет, сечение проводника не выдержит, и он начнет плавиться. В результате этого сеть разомкнется, и не случится токовых перегрузок.

Электрическая дуга

Электрическая дуга является довольно эффективным преобразователем электрической энергии. Она используется при сварке металлических конструкций, а также служит мощным световым источником.

В основу устройства входит следующее. Берут два угольных стержня, подсоединяют провода и прикрепляют их в изолирующих держателях. После этого стержни подключают к источнику тока, который дает малое напряжение, но рассчитан на большую силу тока. Подключают реостат. Угли в городскую сеть включать запрещается, так как это может стать причиной пожара. Если коснуться одним углем о другой, то можно заметить, как сильно они раскалятся. Лучше не смотреть на это пламя, потому что оно вредно для зрения. Электрическую дугу используют в печах для плавки металла, а также в таких мощных осветительных приборах, как прожекторы, кинопроекторы и прочее.

Что такое тепловое действие электрического тока в физике

Проводники от диэлектриков отличает то, что в них могут направленно двигаться заряженные частицы.

В металлах такими частицами являются электроны, в проводящих жидкостях (электролитах) — ионы, в плазме — ионы и электроны.

При отсутствии электрического поля все частицы движутся хаотически. Средняя кинетическая энергия всех частиц одинакова.

При возникновении электрического поля внутри проводника заряженные частицы начинают двигаться вдоль силовых линий.

Сохраняя хаотическое тепловое движение. На рисунке указаны скорости теплового движения частиц.

Положительно заряженные частицы движутся в направлении напряженности поля, отрицательно — навстречу ему, возникает электрический ток. Частицы, перемещаясь, приобретают дополнительную энергию, которая за счет хаотических соударений передается и незаряженным частицам. В результате происходит увеличение кинетической энергии всех частиц, т.е. увеличивается температура и внутренняя энергия тела.

Следовательно, электрический ток в веществе вызывает его нагрев. Это явление называется тепловым действием электрического тока.

Чем больший заряд проходит через проводник, тем сильнее проводник разогревается, и тем больше увеличивается его энергия.

Тепловое действие электрического тока используется в электронагревательных приборах.

1. В быту используется много различных электронагревательных приборов. К ним относятся: электрический камин, который дает дополнительное тепло в том месте комнаты, где оно вам необходимо; электрические чайники, кофейники служат для нагревания воды; на электроплитках быстро готовится пища; мокрые волосы можно быстро высушить потоком сухого горячего воздуха, создаваемого электрическим феном; выстиранное белье хозяйки гладят электрическим утюгом. Это перечисление можно продолжить. Остановимся подробно на отдельных приборах.

В современных квартирах на кухнях устанавливаются электрические плиты. Они заменили плиты, работающие на твердом топливе, и газовые плиты, так как являются экологически более чистыми: нет продуктов сгорания твердого топлива /золы, шлака, дыма/, не происходит загрязнения окружающей среды. Электрические плиты имеют также технические преимущества: они снабжены системой автоматического регулирования температуры, которая позволяет при достижении нужной температуры автоматически отключать от электрической сети весь прибор или его часть /электронагревательный элемент духовки или конфорки/. При остывании электронагревательного прибора он вновь автоматически включается в сеть.

Читайте так же:
Определение номинального тока уставки теплового реле

Конструкция домашних электрических плит очень разнообразна.

На рисунке 186 показана одна из них. На верхней поверхности плиты две плитки (конфорки). Нагревательный элемент плитки, изготовленный из нихромовой (нихром – это сплав двух металлов никеля и хрома) проволоки, запрессован в жароупорном керамическом основании, имеющим форму кольца. (Выбор нихрома определяется тем, что он обладает высокой температурой плавления и не окисляется при высоких температурах. Кроме того свойства нихрома таковы, что при небольшой силе тока в нем выделяется большое количество теплоты).

На передней стенке плиты помещены специальные переключатели для регулирования степени нагрева плиток и духовки.

2. Тепловое действие тока используется не только в быту, но и в технике.

Примером может служить контактная электросварка. Этот вид электросварки основан на использовании теплоты, выделяющейся в месте соприкосновения (контакта) двух кусков металла, в месте их контакта при прохождении через них электрического тока.

Свариваемые детали закрепляют между зажимами, приводят в соприкосновение и пропускают через них электрический ток.

В месте контакта выделяется наибольшее количество теплоты, в результате чего металл сильно нагревается. Когда он благодаря нагреву ,становится пластичным, ток автоматически выключается, и машина сжимает размягченные части деталей настолько сильно, что они прочно соединяются.

Контактная электросварка выполняется автоматически машинами — автоматами.

3. В сельском хозяйстве тепловое действие тока также нашло применение, например, для сушки стогов намоченного дождем сена.

Струи нагретого воздуха от вентилятора и нагревателя поводятся по трубе снизу в самую середину стога и быстро просушивает его. На животноводческих фермах используются специальные аппараты, в которых электрические нагреватели поддерживают температуру, наилучшую для только что родившихся животных.

В инкубаторах из яиц выводятся сотни и тысячи цыплят. В этих «электрических наседках» с большой точностью поддерживается определенная температура /около 38°С/, наиболее благоприятная для развития зародышей в яйцах. А специальный механизм переворачивает яйца, чтобы они равномерно прогревались со всех сторон.

Электрический ток в веществе вызывает его нагрев. Это явление называется тепловым действием электрического тока.

Чем больший заряд проходит через проводник, тем сильнее проводник разогревается, и тем больше увеличивается его энергия.

Какая основная часть присутствует у всех электронагревательных приборов? Какое действие тока в них используется?

Почему электрическую лампу накаливания можно использовать как электронагревательный прибор? Как устроена лампа накаливания? Какая часть лампы накаливания является основной?

Какие электронагревательные приборы вы используете?

Почему для нагревательных элементов электроплит используется нихромовая проволока?

Нагревательный элемент электроплит может быть включен на несколько степеней нагревания. Как этого достигают?

Что такое тепловое действие электрического тока в физике

Вы уже хорошо знаете, что при прохождении электрического тока нить лампы накаливания нагревается настолько сильно, что начинает излучать видимый свет. Благодаря действию электрического тока нагреваются утюг и электрическая плита. А вот вентилятор и пылесос нагреваются незначительно, не становятся очень горячими (конечно, если все в порядке) и подводящие провода. От чего же зависит тепловое действие тока?

Рассуждаем о тепловом действии тока

Прохождение электрического тока всегда сопровождается выделением теплоты, и этот факт нетрудно объяснить.

Читайте так же:
Преобразователи тепловой энергии в электрический ток

Когда в проводнике идет ток, то свободные заряженные частицы, двигаясь под действием электрического поля, сталкиваются с другими частицами и передают им часть своей энергии. Электроны в металлах сталкиваются с ионами, расположенными в узлах кристаллической решетки, ионы в электролитах — с другими ионами, атомами или молекулами. В результате средняя скорость хаотичного (теплового) движения частиц вещества увеличивается — проводник нагревается. По закону сохранения энергии кинетическая энергия, приобретенная свободными заряженными частицами в результате действия электрического поля, преобразуется во внутреннюю энергию проводника.

Очевидно: чем чаще сталкиваются частицы, то есть чем больше сопротивление проводника, тем больше энергии передается проводнику и тем сильнее он нагревается. Таким образом, при неизменной силе тока количество теплоты, выделяющееся в проводнике при прохождении тока, прямо пропорционально сопротивлению проводника.

Кроме того, с увеличением в проводнике силы тока количество выделяемой теплоты тоже увеличивается. Ведь чем больше частиц проходит через поперечное сечение проводника за единицу времени, тем больше столкновений частиц происходит.

|2 Открываем закон Джоуля — Ленца

Тепловое действие тока изучали на опытах английский ученый Дж. Джоуль(рис. 34.1) и российский ученый немецкого происхождения

Э. Х. Ленц(рис. 34.2). Независимо друг от друга они пришли к одинаковому выводу, который позже получил название закон Джоуля — Ленца:

Количество теплоты, выделяющееся в проводнике при прохождении тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока:

На рис. 34.3 изображена схема опыта, доказывающего справедливость закона Джоуля — Ленца. Попробуйте описать этот опыт.

Закон Джоуля — Ленца был установлен экспериментально. Теперь же, зная формулу для расчета работы тока (A = UIt), данный закон можно вывести с помощью простых математических выкладок.

Если на участке цепи, в котором течет ток, не выполняется механическая работа и не происходят химические реакции, результатом работы тока будет только нагревание проводника. Нагретый проводник путем теплопередачи отдает полученную энергию окружающим телам. Следовательно, в данном случае согласно закону сохранения энергии количество выделенной теплоты Q будет равно работе A тока: Q = A.

Обращаем внимание на некоторые особенности вычисления количества теплоты

Для получения математического выражения закона Джоуля — Ленца мы воспользовались некоторыми предположениями. Исследования показали, что в любом случае количество теплоты, выделяющееся в участке цепи в результате прохождения тока, можно вычислить по формуле Q = 1 2 Rt.

Возникает вопрос: что делать, если сила тока неизвестна, а известно напряжение на концах участка цепи? Казалось бы, можно воспользоваться законом Ома. Действительно,

После сокращения на R получим:

Однако этой формулой, впрочем как и формулой Q = UIt, можно воспользоваться только в том случае, когда вся электрическая энергия расходуется на нагревание.

Если же на участке цепи есть потребители энергии, в которых выполняется механическая работа или происходят химические реакции, U 2

формулы Q =— t и Q = UIt использовать нельзя. В таких случаях при-R

меняют более сложные математические выражения, учитывающие всю совокупность явлений.

Учимся решать задачи

Задача. Определите сопротивление нагревателя, с помощью которого можно за 5 мин довести до кипения 1,5 кг воды, взятой при температуре 12 °С. Напряжение в сети равно 220 В, КПД нагревателя — 84 %.

Анализ физической проблемы. Когда в нагревателе проходит электрический ток, выделяется количество теплоты Qiioth. Часть ее (QnOTe3H) расходуется на нагревание воды до кипения, то есть до 100 °С.

Читайте так же:
Тепловое поражение электрическим током это тест

Выразив Qhoth и Qnmesn через указанные в условии задачи величины, найдем искомую величину. Значение удельной теплоемкости с воды найдем в соответствующей таблице (см. табл. 1 Приложения).

Прохождение тока в проводнике сопровождается выделением теплоты. Количество теплоты, выделяющееся в проводнике при прохождении тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока: Q = I 2 Rt (закон Джоуля — Ленца).

1. Почему нагреваются проводники, в которых течет электрический ток?

2. Сформулируйте закон Джоуля — Ленца. Почему он имеет такое название? 3. Как математически записывается закон Джоуля — Ленца?

4. Какие формулы для расчета количества теплоты, выделяющегося

в проводнике при прохождении тока, вы знаете? Всегда ли можно ими

1. Сколько теплоты выделится за 10 мин в электроплите, если сопротивление нагревательного элемента плиты равно 30 Ом, а сила тока в нем 4 А?

2. Два проводника сопротивлениями 10 и 20 Ом включены в сеть напряжением 100 В. Какое количество теплоты выделится за 5 с в каждом проводнике, если они соединены параллельно?

3. Почему электрические провода, по которым подается напряжение к электрической лампе накаливания, не нагреваются, а нить накала лампы нагревается и ярко светится?

4. Электрокипятильник за 5 мин нагревает 0,2 кг воды от 14 °С до кипения при условии, что в его обмотке течет ток силой 2 А. Определите напряжение, поданное на электрокипятильник. Потерями энергии пренебречь.

5. В каждый из двух калориметров налили 200 г воды при температуре 20 °С. В один калориметр поместили нагреватель сопротивлением 24 Ом, во второй — сопротивлением 12 Ом. Нагреватели соединили последовательно и подключили к источнику тока (см. рис. 34.3). Определите температуру воды в каждом калориметре после нагревания, если оно длилось 7 мин при неизменной силе тока в цепи 1,5 А. Потерями энергии пренебречь.

6. Какой длины нихромовый провод нужно взять, чтобы сделать электрический камин, работающий при напряжении 120 В и выделяющий 1 МДж теплоты в час? Диаметр провода 0,5 мм.

7. Сравните количества теплоты, которые необходимо затратить, чтобы расплавить медный и свинцовый провода, если эти провода имеют одинаковую массу и взяты при температуре 27 °С.

Тепловое действие тока

Закон Джо́уля — Ле́нца — физический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцем [1] .

Содержание

  • 1 Определения
  • 2 Практическое значение
    • 2.1 Снижение потерь энергии
    • 2.2 Выбор проводов для цепей
    • 2.3 Электронагревательные приборы
    • 2.4 Плавкие предохранители
  • 3 См. также
  • 4 Примечания

Определения [ | ]

В словесной формулировке звучит следующим образом [2] :

Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, равна произведению плотности электрического тока на величину напряженности электрического поля.

Математически может быть выражен в следующей форме:

w = j → ⋅ E → = σ E 2 , >cdot >=sigma E^<2>,>

где w — мощность выделения тепла в единице объёма, j → >> — плотность электрического тока, E → >> — напряжённость электрического поля, σ — проводимость среды, а точкой обозначено скалярное произведение.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах [3] :

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка.

В интегральной форме этот закон имеет вид

Читайте так же:
Оборудование для наблюдение теплового действия электрического тока

d Q = I 2 R d t , Rdt,> Q = ∫ t 1 t 2 I 2 R d t , >^>I^<2>Rdt,>

где d Q — количество теплоты, выделяемое за промежуток времени d t , I — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t 1 > до t 2 > . В случае постоянных силы тока и сопротивления:

Q = I 2 R t . Rt.>

Применяя закон Ома, можно получить следующие эквивалентные формулы:

Q = U 2 t / R = I U t . t/R =IUt.>

Практическое значение [ | ]

Снижение потерь энергии [ | ]

При передаче электроэнергии тепловое действие тока в проводах является нежелательным, поскольку ведёт к потерям энергии. Подводящие провода и нагрузка соединены последовательно — значит, ток в сети I на проводах и нагрузке одинаков. Мощность нагрузки и сопротивление проводов не должны зависеть от выбора напряжения источника. Выделяемая на проводах и на нагрузке мощность определяется следующими формулами

Q w = R w ⋅ I 2 , =R_cdot I^<2>,> Q c = U c ⋅ I . =U_cdot I.>

Откуда следует, что Q w = R w ⋅ Q c 2 / U c 2 =R_cdot Q_^<2>/U_^<2>> . Так как в каждом конкретном случае мощность нагрузки и сопротивление проводов остаются неизменными и выражение R w ⋅ Q c 2 cdot Q_^<2>> является константой, то тепло, выделяемое на проводе, обратно пропорционально квадрату напряжения на потребителе. Повышая напряжение, мы снижаем тепловые потери в проводах. Это, однако, снижает электробезопасность линий электропередачи.

Выбор проводов для цепей [ | ]

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при выборе проводов, предназначенных для сборки электрических цепей, достаточно следовать принятым нормативным документам, которые регламентируют выбор сечения проводников.

По этой причине для передачи необходимой мощности через современные магистральные воздушные линии электропередач, их проектируют под сверхвысокое напряжение (до 1150 кВ), чтобы обеспечить сверхнизкие токи в ЛЭП.

Электронагревательные приборы [ | ]

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители [ | ]

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector