Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое параметрический стабилизатор тока

Параметрические и компенсационные стабилизаторы. Защита стабилизатора напряжения от перегрузок.

Существует два вида стабилизаторов напряжения: параметрические и компенсационные. В первом типе стабилизаторов используется постоянство напряжения некоторых видов приборов при изменении протекающего через них тока (например, стабилитрон). Во втором типе стабилизаторов задачу стабилизации напряжения решают по компенсационному принципу, основанному на автоматическом регулировании напряжения, подводимого к нагрузке.

Полупроводниковый стабилитрон — полупроводниковый диод, напряжение на котором сохраняется с определенной точностью при протекании через него тока в заданном диапазоне, предназначенный для стабилизации постоянного напряжения. Принцип действия стабилитрона основан на использовании участка электрического пробоя на обратной ветви ВАХ p-n-перехода.

Основными параметрами стабилитрона являются: напряжение стабилизации Uст — падение напряжения на стабилитроне при протекании заданного тока стабилизации; минимальный Iст мин и максимальный Iст макс токи стабилитрона; температурный коэффициент напряжения стабилизации,

дифференциальное сопротивление стабилитрона, определяемое на участке пробоя,

Устройство, предназначенное для стабилизации постоянного напряжения, в котором используется стабилитрон, называется параметрическим стабилизатором напряжения, поскольку его характеристики полностью определяются параметрами стабилитрона.

Высокое качество стабилизации напряжения можно получить при использовании компенсационных стабилизаторов, представляющих собой

автоматические регуляторы, в которых фактически выходное напряжение

сравнивается с эталонным (опорным) напряжением. Возникающий при этом сигнал рассогласования усиливается и воздействует на регулирующий элемент стабилизатора таким образом, что выходное напряжение стремилось бы достичь эталонного уровня. В качестве источника опорного напряжения обычно используют параметрический стабилизатор, работающий с малыми токами нагрузки, реже – гальванические батареи.

Роль регулирующего элемента в этой схеме играет транзистор VT1. С ростом величины входного напряжения Uвх выходное напряжение возрастает, создавая сигнал рассогласования Uбэ на входе усилителя постоянного тока, выполненного на транзисторе VT2. Ток коллектора транзистора VT2 возрастает, а потенциал его коллектора становится более положительным относительно земли. Напряжение база-эмиттер транзистора VT1 уменьшается, что приводит к возрастанию внутреннего сопротивления этого транзистора и падению напряжения на нем. Выходное напряжение при этом уменьшается, стремясь к прежнему значению. Для получения опорного напряжения Uоп используется параметрический стабилизатор напряжения, состоящий из резистора Rб и стабилитрона VD1.

Параметрические стабилизаторы

Параметрические стабилизаторы напряжения (ПСН) используются в маломощных ИВЭ (с выходным током до 15. 20 мА), а также в качестве источников опорного напряжения в компенсационных стабилизаторах и контрольно-измерительной аппаратуре. Для стабилизации постоянного напряжения в них применяются элементы с нелинейной вольтамперной характеристикой, напряжение на которых мало зависит от протекающего через них тока. В качестве таких элементов используются полупроводниковые стабилитроны (диоды Зенера) и стабисторы.

Основная схема однокаскадного ПСН приведена на рис. 12.7, а. При изменении входного напряжения Ui ток Is через стабилитрон VD изменяется, что приводит к незначительным изменениям напряжения на стабилитроне, а следовательно, и на нагрузке. Изменение Uo зависит от приращения напряжения DUi, сопротивления ограничивающего резистора Ко и внутреннего сопротивления стабилитрона, равного Rs=dUs/dIs. Коэффициент стабилизации определяется по приближенной формуле: Kcт=(Uo/Ui)(Ro/Rs). Внутреннее сопротивление стабилизатора, определяемое в основном дифференциальным сопротивлением стабилитрона, достигает минимального значения для стабилитронов с напряжением стабилизации 6. 8 В.

Температурный коэффициент напряжения Ктн стабилитрона определяет отклонение выходного напряжения ПСН при изменении температуры. Установлено, что наибольшая температурная зависимость наблюдается для приборов с напряжением стабилизации Us>5,5 В. Температурная компенсация в этом случае может быть достигнута включением последовательно со стабилитроном диодов в прямом направлении (VD2 и VD3 на рис. 12.7, б). Однако при этом возрастает внутреннее сопротивление ПСН за счет дифференциального сопротивления термокомпенсирую-щих диодов. Кроме того, термокомпенсированный ПСН имеет повышенное значение Us и пониженный коэффициент стабилизации.

Коэффициент стабилизации ПСН по схеме рис. 12.7, б равен Kcт=(UoRo)/Ui(Rs+Rs’), где Rs’— суммарное динамическое сопротивление термо-компенсирующих диодов VD2, VD3.

Если требуется повышенная стабильность выходного напряжения, то применяются двухкаскадные или мостовые схемы стабилизаторов, приведенные на

рис. 12.8 и 12.9. Коэффициент стабилизации ПСН по схеме рис. 12.8

где Rs, Rs’ — динамические сопротивления стабилитронов VD1,VD2.

Предварительная стабилизация напряжения в двухкаскадном ПСН (рис. 12.8) с помощью элементов Ro и VD1 позволяет получить достаточно высокий коэффициент стабилизации выходного напряжения.

Повышение коэффициента стабилизации в мостовых схемах (рис. 12.9) достигается за счет компенсирующего напряжения на резисторе R2 или стабилитроне VD1 при изменениях входного напряжения. Коэффициент стабилизации при

Читайте так же:
Что такое интегральный стабилизатор тока

Rn=const для схемы рис. 12.9,

Для ПСН на рис. 12.9, б

где Rs, Rs’ — дифференциальные сопротивления стабилитронов VD1 и VD2. В мостовых параметрических стабилизаторах коэффициент стабилизации теоретически может быть бесконечно большим, если выбрать элементы, исходя из условий равенства нулю выражений в скобках. Внутреннее сопротивление для схемы на рис. 12.9, a Ri=Rs+R2, а для схемы на рис. 12.9, б Ri=Rs+Rs’.

Величина отклонения выходного напряжения мостовых схем ПСН при изменении температуры зависит от температурных коэффициентов стабилитронов, а для схемы на рис. 12.9, а еще и от температурных коэффициентов резисторов R1 и R2. Особенностью мостовой схемы на рис. 12.9, б является возможность получения низких выходных напряжений при небольшом температурном уходе за счет применения стабилитронов с мало отличающимися температурными коэффициентами.

Следует отметить, что относительно высокая стабильность выходного напряжения в ПСН на рис. 12.8 и 12.9 достигается за счет значительного ухудшения КПД по сравнению со схемой на рис. 12.7. Повысить стабильность выходного напряжения ПСН без ухудшения КПД позволяет схема на рис. 12.10 за счет применения источника тока, выполненного на транзисторе VT, стабилитроне VD1 и резисторах Re и Rb. Это позволяет стабилизировать ток, протекающий через стабилитрон VD2 и тем самым уменьшить нестабильность напряжения на нагрузке при изменениях входного напряжения. Температурный уход и внутреннее сопротивление этого ПСН практически такие же, как в схеме на рис. 12.10.

Максимальная выходная мощность рассмотренных ПСН ограничивается предельными значениями тока стабилизации и рассеиваемой мощностью стабилитронов. Если использовать транзистор в режиме эмиттерного повторителя со стабилитроном в цепи базы (рис. 12.11, а), мощность в нагрузке может быть увеличена. Коэффициент стабилизации такого ПСН

, а внутреннее сопротивление

— сопротивления базы, эмиттера, коллектора и коэффициент передачи тока транзистора в схеме с ОЭ соответственно.

Отметим, что ПСН по схеме рис. 12.11, а при Us>5,5 В по температурной нестабильности уступает рассмотренным выше стабилизаторам.

На рис. 12.11, б приведена схема ПСН на транзисторах различной проводимости, выполняющих роль стабилизаторов тока. Для него характерна высокая стабильность выходного напряжения и возможность одновременного подключения двух нагрузок Rn и Rn’ к различным шинам входного напряжения. По коэффициенту стабилизации и температурному уходу эта схема незначительно превосходит схему на рис. 12.10, а внутренние сопротивления Rs и Rs’ определяются стабилитронами VD1 и VD2 соответственно.

Моделирование рассмотренных стабилизаторов можно проводить двумя способами — с использованием на входе стабилизатора источника постоянного напряжения с имитатором источника пульсации или с использованием рассмотренных в предыдущем разделе выпрямителей. При этом последовательно со стабилитроном необходимо включить амперметр, а на выход стабилизатора — вольтметр. При наличии этих двух приборов можно определить дифференциальное сопротивление Rs=dUo/dIs в рабочей точке стабилитрона и затем рассчитать коэффициент стабилизации по приведенным формулам. Поскольку они справедливы только для ненагруженного стабилизатора, то сопротивление нагрузки Rn необходимо выбирать больше 100 кОм. Для наблюдения и измерения пульсации используется осциллограф.

Пояснить принцип работы параметрических стабилизаторов напряжения

В параметрических стабилизаторах напряжения режим стабилизации осуществляется за счет нелинейности ВАХ регулирующего элемента. От ВАХ зависит качество стабилизации. Степень нелинейности ВАХ на рабочем участке ВС оценивается отношением динамического и статического сопротивлений. Статическое сопротивление RС – это сопротивление, которое оказывает нелинейный элемент постоянному по величине току в выбранной рабочей точке А характеристики: RС = U / I = tg a . Динамическое сопротивление элемента RД равно отношению изменения падения напряжения на элементе DU к изменению величины тока, протекающего через элемент DI. Динамическое сопротивление является тем сопротивлением, которое оказывает элемент изменениям протекающего через него тока: RД = DU / DI = tg b .

В качестве нелинейных элементов в параметрических стабилизаторах напряжения используются газоразрядные и кремниевые стабилитроны. Схемы параметрических стабилизаторов с использованием стабилитронов применяются для стабилизации напряжения при мощности в нагрузке до нескольких ватт. Достоинство таких схем – простота исполнения и малое количество элементов, недостаток – отсутствие плавной регулировки и точной установки номинального значения выходного напряжения, кроме этого, у таких схем мал к.п.д..

Схема стабилизатора состоит из гасящего сопротивления RГ , включенного последовательно с нагрузкой, и стабилитрона VD, включенного параллельно нагрузке.

Читайте так же:
Что такое диодный стабилизатор тока

Для определения основных показателей качества параметрического стабилизатора постоянного напряжения представим его функциональной схемой для изменений напряжения на входе. Считая, что стабилизатор

нагружен на активное сопротивление RН , изменение DU1 является медленным и дифференциальное сопротивление стабилитрона неизменно в пределах рабочего участка характеристики стабилитрона. Тогда, передаточная функция, связывающая возмущение на входе DU1 с реакцией на выходе DU2 , представляется коэффициентом деления

(1)

Преобразуя (1), имеем

Отношение DU1/DU2 является дифференциальным коэффициентом стабилизации KСТ. Д. ,который связан с коэффициентом стабилизации KСТ. U выражением

(4)

где K = U2/U1– коэффициент передачи постоянной составляющей напряжения стабилизатора.

10.Пояснить принцип работы компенсационных стабилизаторов напряжения

Принцип работы компенсационного стабилизатора основан на использовании цепи отрицательной обратной связи (далее в тексте — ООС). Для реализации указанного принципа устройство кроме регулирующего (исполнительного) элемента РЭ должно содержать исполнительный элемент ИЭ, элемент сравнения и источник эталонного напряжения Uэт (рис.1). Выходное напряжение измерительного элемента, пропорциональное стабилизированному параметру, сравнивается в элементе сравнения с эталонным напряжением, и полученный сигнал ошибки Uош = Uэт — Uиз управляет коэффициентом передачи РЭ. Увеличение Uош , вызванное уменьшением выходного напряжения, увеличивает коэффициент передачи РЭ, что ведет к увеличению выходного напряжения. И, наоборот, увеличение выходного напряжения, уменьшая сигнал ошибки, вызывает уменьшение коэффициента передачи РЭ, что в свою очередь ведет к уменьшению выходного напряжения.

В зависимости от вида выполнения РЭ различают непрерывные и ключевые компенсационные стабилизаторы напряжения. В непрерывных компенсационных стабилизаторах в качестве РЭ используют биполярный или полевой транзистор, ключевых — импульсные усилители мощности. Мы остановимся на первом варианте

.Типовая схема разбираемого компенсатора на рис.2. Рассмотрим теперь не структурно, как на рис.1, а подетально его работу. Выходное напряжение стабилизатора равно разности его входного напряжения и падения напряжения между выводами эмиттера и коллектора регулирующего транзистора VT: Uвых = Uвх — Uкэ. В свою очередь, для Uкэ справедливо выражение Uкэ = Uкб + Uбэ≅ Uкб + const. Напряжение Uкб определяется падением напряжения на резисторе смещения Rсм ( Uкб = IR*Rсм = Uвх — UDAвых). Операционный усилитель включен DA включен по схеме с дифференциальным входом, поэтому его выходное напряжение UDAвых = KU0*(Uэт — UR2).

Здесь KU0 — коэффициент усиления операционного усилителя DA по напряжению. Так как цепь ООС (отрицательная обратная связь — подача сигнала с выхода на вход) в усилителе отсутствует, то из-за большого KU0 можно считать, что во всех режимах работы Uэт — UR2 = 0 и, следовательно, выходное напряжение стабилизатора Uвых = Uэт*(R1 +R2)/R2. Возникновение любых отклонений выходного напряжения от указанного уровня приводит к нарушению условия Uэт — UR2 = 0. Это изменяет выходное напряжение операционного усилителя, а следовательно, и напряжение Uкб транзистора VT, компенсируя возникшие отклонения. Рассмотрим конкретнее.

Принцип работы и основные характеристики стабилитрона

У полупроводникового диода множество «профессий». Он может выпрямлять напряжение, развязывать электрические цепи, предохранять оборудование от неправильной подачи питания. Но есть не совсем обычный вид «работы» диода, когда его свойство односторонней проводимости используется очень косвенно. Полупроводниковый прибор, для которого нормальным режимом является обратное смещение, называется стабилитроном.

Что такое стабилитрон, где используется и какие бывают

Стабилитрон, или диод Зенера (по имени американского ученого, первым изучившим и описавшим свойства этого полупроводникового прибора), представляет собой обычный диод с p-n переходом. Его особенность – работа на участке характеристики с отрицательным смещением, то есть, когда напряжение прикладывается в обратной полярности. Используется такой диод в качестве самостоятельного стабилизатора, поддерживающего напряжение потребителя постоянным вне зависимости от изменения тока нагрузки и колебаний входного напряжения. Также узлы на стабилитронах применяются в качестве источников опорного напряжения для других стабилизаторов с развитой схемой. Реже диод с обратным включением используется в качестве элемента формирования импульсов или защитного ограничителя от перенапряжений.

Существуют обычные стабилитроны и двуханодные. Двуханодный стабилитрон — это два диода, включенные встречно в одном корпусе. Его можно заменить двумя отдельными приборами, включив их по соответствующей схеме.

Вольт-амперная характеристика стабилитрона и его принцип работы

Чтобы разобраться с принципом работы стабилитрона, надо изучить его типовую вольт-амперную характеристику (ВАХ).

Если к зенеру приложить напряжение в прямом направлении, как к обычному диоду, то он и вести себя будет подобно обычному диоду. При напряжении около 0,6 В (для кремниевого прибора) он откроется и выйдет на линейный участок ВАХ. По теме статьи более интересно поведение стабилитрона при приложении напряжения обратной полярности (отрицательная ветвь характеристики). Сначала сопротивление его резко возрастет, и прибор перестанет пропускать ток. Но при достижении определенного значения напряжения произойдет резкий рост тока, называемый пробоем. Он носит лавинный характер, и исчезает после снятия питания. Если продолжать увеличивать обратное напряжение, то p-n переход начнет нагреваться и выйдет в режим теплового пробоя. Тепловой пробой необратим и означает выход стабилитрона из строя, поэтому вводить диод в такой режим не следует.

Читайте так же:
Стабилизатор тока 380 вольт

Интересен участок работы полупроводникового прибора в режиме лавинного пробоя. Его форма близка к линейной, и он имеет высокую крутизну. Это означает, что при большом изменении тока (ΔI) изменение падения напряжения на стабилитроне относительно невелико (ΔU). А это и есть стабилизация.

Такое поведение при подаче обратного напряжения характерно для любого диода. Но особенность стабилитрона в том, что его параметры на этом участке ВАХ нормированы. Его напряжение стабилизации и крутизна характеристики заданы (с определенным разбросом) и являются важными параметрами, определяющими пригодность использования прибора в схеме. Найти их можно в справочниках. Обычные диоды также можно использовать в качестве стабилитронов – если снять их ВАХ и среди них найдется с подходящей характеристикой. Но это долгий, трудоёмкий процесс с негарантированным результатом.

Основные характеристики стабилитрона

Чтобы подобрать диод Зенера под существующие цели, надо знать несколько важных параметров. Эти характеристики определят пригодность выбранного прибора для решения поставленных задач.

Номинальное напряжение стабилизации

Первый параметр зенера, на который надо обратить внимание при выборе – напряжение стабилизации, определяемое точкой начала лавинного пробоя. С него начинают выбор прибора для использования в схеме. У разных экземпляров ординарных стабилитронов, даже одного типа, напряжение имеет разброс в районе нескольких процентов, у прецизионных разница ниже. Если номинальное напряжение неизвестно, его можно определить, собрав простую схему. Следует подготовить:

  • балластный резистор в 1…3 кОм;
  • регулируемый источник напряжения;
  • вольтметр (можно использовать тестер).

Надо поднимать напряжение источника питания с нуля, контролируя по вольтметру рост напряжения на стабилитроне. В какой-то момент он остановится, несмотря на дальнейшее увеличение входного напряжения. Это и есть фактическое напряжение стабилизации. Если регулируемого источника нет, можно использовать блок питания с постоянным выходным напряжением заведомо выше Uстабилизации. Схема и принцип измерения остаются теми же. Но есть риск выхода полупроводникового прибора из строя из-за превышения рабочего тока.

Стабилитроны применяются для работы с напряжениями от 2…3 В до 200 В. Для формирования стабильного напряжения ниже данного диапазона, используются другие приборы – стабисторы, работающие на прямом участке ВАХ.

Диапазон рабочих токов

Ток, при котором стабилитроны исполняют свою функцию, ограничен сверху и снизу. Снизу он ограничен началом линейного участка обратной ветви ВАХ. При меньших токах характеристика не обеспечивает режима неизменности напряжения.

Верхнее значение лимитировано максимальной мощностью рассеяния, на которую способен полупроводниковый прибор и зависит от его конструкции. Стабилитроны в металлическом корпусе рассчитаны на больший ток, но не надо забывать об использовании радиаторов. Без них наибольшая допустимая мощность рассеяния будет существенно меньше.

Дифференциальное сопротивление

Еще один параметр, определяющий работу стабилитрона – дифференциальное сопротивление Rст. Оно определяется как отношение изменения напряжения ΔU к вызвавшему его изменение тока ΔI. Эта величина имеет размерность сопротивления и измеряется в омах. Графически — это тангенс угла наклона рабочего участка характеристики. Очевидно, что чем меньше сопротивление, тем лучше качество стабилизации. У идеального (не существующего на практике) стабилитрона Rст равно нулю – любое приращение тока не вызовет никакого изменения напряжения, и участок ВАХ будет параллелен оси ординат.

Маркировка стабилитронов

Отечественные и импортные стабилитроны в металлическом корпусе маркируются просто и наглядно. На них наносится наименование прибора и расположение анода и катода в виде схематического обозначения.

Приборы в пластиковом корпусе маркируются кольцами и точками различных цветов со стороны катода и анода. По цвету и сочетанию знаков можно определить тип прибора, но для этого придётся заглянуть в справочники или использовать программы-калькуляторы. И то, и другое можно найти в интернете.

Читайте так же:
Стабилизатор тока до 200 а

Иногда на маломощных стабилитронах наносят напряжение стабилизации.

Схемы включения стабилитрона

Основная схема включения стабилитрона – последовательно с резистором, который задает ток через полупроводниковый прибор и берет на себя излишек напряжения. Два элемента составляют обычный делитель. При изменении входного напряжения падение на стабилитроне остается постоянным, а на резисторе изменяется.

Такая схема может использоваться самостоятельно и называется параметрическим стабилизатором. Он поддерживает напряжение на нагрузке постоянным, несмотря на колебания входного напряжения или потребляемого тока (в определенных пределах). Подобный блок ещё используют в качестве вспомогательной схемы там, где нужен источник образцового напряжения.

Подобное включение также применяется в качестве защиты чувствительного оборудования (датчиков и т.п.) от нештатного появления высокого напряжения в линии питания или измерения (постоянного или случайных импульсов). Все, что выше напряжения стабилизации полупроводникового прибора, «срезается». Такая схема называется «барьером Зенера».

Раньше свойство стабилитрона «срезать» верхушки напряжения широко использовалось в схемах формирователей импульсов. В цепях переменного тока применялись двуханодные приборы.

Но с развитием транзисторной техники и появлением интегральных микросхем такой принцип стал использоваться редко.

Если под рукой отсутствует стабилитрон на нужное напряжение, его можно составить из двух. Общее напряжение стабилизации будет равно сумме двух напряжений.

Важно! Нельзя включать стабилитроны параллельно для увеличения рабочего тока! Разброс вольтамперных характеристик приведет к выводу в зону теплового пробоя один стабилитрон, далее выйдет из строя второй из-за превышения тока нагрузки.

Хотя в технической документации времен СССР разрешается параллельное включение зенеров в параллель, но с оговоркой, что приборы должны быть однотипные и суммарная фактическая мощность рассеяния в процессе эксплуатации не должна превышать допустимую для единичного стабилитрона. То есть, увеличения рабочего тока при таком условии не добиться.

Для повышения допустимого тока нагрузки используется другая схема. Параметрический стабилизатор дополняется транзистором, и получается эмиттерный повторитель с нагрузкой в цепи эмиттера и стабильным напряжением на базе транзистора .

В этом случае выходное напряжение стабилизатора будет меньше Uстабилизации на величину падения напряжения на эмиттерном переходе – для кремниевого транзистора около 0,6 В. Чтобы скомпенсировать это уменьшение, можно включить последовательно со стабилитроном диод в прямом направлении.

Таким способом (включением одного или нескольких диодов) можно подкорректировать выходное напряжение стабилизатора в большую сторону в небольших пределах. Если надо радикально повысить Uвых, лучше включить последовательно ещё одни стабилитрон.

Сфера применения стабилитрона в электронных схемах обширна. При осознанном подходе к выбору этот полупроводниковый прибор поможет решить множество задач, поставленных перед разработчиком.

Что такое полупроводниковый диод, виды диодов и график вольт-амперной характеристики

Что такое диодный мост, принцип его работы и схема подключения

Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007

Что такое варистор, основные технические параметры, для чего используется

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Что такое тиристор, как он работает, виды тиристоров и описание основных характеристик

Параметрические стабилизаторы

В качестве параметрических стабилизаторов постоянного напряжения наиболее часто используются кремниевые стаби­литроны. В отличие от обычных диодов кремниевые стабили­заторы работают на обратной ветви ВАХ в области пробоя и незначительное увеличение напряжения вызывает существенное увеличение тока через стабилитрон. Однако «пробой» перехода не приведет к повреждению стабилитрона, если ток не превышает предельно допустимого значения..

На рис. 4.2 представлена ВАХ кремниевого стабилитрона, область 1—2 характеристики является рабочей.

Кремниевые стабилитроны характеризуются следующими параметрами: номинальным напряжением стабилизациипри номинальном токе стабилитрона; минимально допу­стимым током стабилизациихарактеризующим начало рабочего участка; максимально допустимым током стабилизации при котором мощность, рассеиваемая на стабилит­роне, не превышает максимально допустимого значения; диффе­ренциальным сопротивлением гст, определяемым как отношение приращения напряжения стабилизации к приращению тока че­рез стабилитрон; максимально допустимой мощностью, рассеи­ваемой стабилитроном Ртах, при которой температура р-п пере­хода не превышает предельно допустимого значенияразбросом напряжения стабилизации от номинального значения при заданных токе стабилитрона и температуре окружающей среды; средним температурным коэффициентом напряжения стабилизации аст, определяемым отношением изменения напря­жения стабилизации в процентах к абсолютному изменению температуры.

Промышленность выпускает стабилитроны на напряжения от единиц до сотен вольт в корпусном и бескорпусном исполне­нии на различные мощности от сотен милливатт до нескольких ватт. Для уменьшения температурного коэффициента последовательно со стабилитроном включают р-п переходы в прямом направлении.

Читайте так же:
Стабилизатор с ограничителем тока

На рис. 4.3, а представлена однокаскадная схема пара­метрического стабилизатора. Она состоит из гасящего резистора включенного последовательно с потребителем, стаби­литрона VD1, включенного параллельно потребителю. Принцип работы однокаскадного параметрического стабили­затора заключается в следующем При увеличении напряжения на входе стабилизатора ток через стабилитрон VD1 резко возрастает, что приводит к увеличению падения напряжения на гасящем резисторе Rn. Приращение напряжения на гасящем резисторе примерно равно приращению напряжения на входе стабилизатора, так что напряжение на выходе стабилизатора при этом изменяется незначительно.

Коэффициент стабилизации однокаскадного параметриче­ского стабилизатора

гдедифференциальное сопротивление стабилитрона.

«Как» видно из (4.1), коэффициент стабилизации зависит от сопротивления резистора Rn и rCTi. При увеличении сопротивле­ния Rri необходимо повышать входное напряжение Ui, поэто­му коэффициент стабилизации не может безгранично увеличиваться. С учетом изменения входного напряжения выражение для коэффициента стабилизации можно представить в следующем виде:

гдеотносительное отклонение напряжения в сети в сто­рону понижения;

— максимально возможный коэффициент стабилизации одно­каскадного параметрического стабилизатора;

Из (4.3) видно, что для выбранного стабилитрона VD1 при известном токе нагрузки коэффициент стабилизации не может быть больше -Внутреннее сопротивление однокаскадного параметриче­ского стабилизатора приближенно равно дифференциальному сопротивлению стабилитрона: -Изменение окружающей температуры приводит к изменению выходного напряжения стабилизатора. Изменение выходного напряжения в зависимости от температуры характеризуется температурным коэффициентом стабилизатора у. который, в свою очередь, зависит от температурного коэффициента напря­жения стабилитрона, применяемого в схеме.

На рис. 4.3, б представлена схема двухкаскадного парамет­рического стабилизатора. Выходной каскад стабилизатора, со­стоящий из стабилитрона VD1 и гасящего резистора Rru пи­тается от предварительного стабилизатора, выполненного на стабилитронах VD2, VD3 и резисторе Rri.

Коэффициент стабилизации такой схемы равен произведе­нию коэффициентов стабилизации первого и второго каскадов:

Внутреннее сопротивление схемы на рис. 4.3, б, как и в однокаскадном параметрическом стабилизаторе, равно прибли­женно дифференциальному сопротивлению стабилитрона VD1. Таким образом, применяя многокаскадные параметрические стабилизаторы, можно значительно повышать коэффициент ста­билизации, однако стабильность выходного напряжения при изменении тока нагрузки остается такой же, что и в однокаскадных схемах.

В качестве параметрических стабилизаторов постоянного тока используются нелинейные элементы, ток которых мало зависит от. напряжения, приложенного к ним. Таким элемен­том может быть полевой или биполярный транзистор. Выход­ные и входная характеристики полевого транзистора приведены на рис. 4.4. Такие выходные характеристики имеют полевые транзисторы с р-п переходом и МОП-транзисторы обедненного типа. Из характеристик видно, что если напряжение затвор— исток неизменно, то и ток стока полевого транзистора изме­няется незначительно при изменении напряжения сток—исток.

Широкое распространение получила схема параметрическо­го «стабилизатора тока на полевом транзисторе, когда затвор и исток закороченыПолевой транзистор вклю­чен последовательно с сопротивлением нагрузки. Значение тока нагрузки 1а=1с определяется выбором со­противления резистора

Максимальное значение токаСопротивление резистора рассчитывается по формуле

Коэффициент стабилизации по входному напряжению

Стабилизаторы тока с полевым и биполярным транзистора­ми применяют вместо гасящего резистора Rr в параметриче­ских стабилизаторах напряжения (рис. 4.6). Это дает возмож­ность обеспечить получение высокого коэффициента стабилиза­ции, при относительно высоком КПД.

Коэффициент стабилизации по напряжению схемына рис. 4.6 определяется (4.1), в котором для схемы на: рис. 4.6, б

рис. 4.6, крутизна полевого транзисторастатический коэффициент передачи тока и сопротивление коллекто­ра транзистора VT1 в схеме с общим эмиттером; дифференциальное сопротивление стабилитрона VD2. Внутреннее сопротивление схем на рис. 4.6, как и для схем на рис. 4.3, равно дифференциальному сопротивлению стабилитрона. Исходными данными для расчета стабилизаторов явля­ются: номинальное напряжение сети Uu В; частота тока сетиотносительные отклонения напряжения сети как в сторону повышения, так и в сторону понижения amax, amm; номинальное значение выходного напряжениямакси­мальный и минимальный ток и нагрузкикоэффи­циент стабилизациивнутреннее сопротивление rt амплитуда переменной составляющей выходного напряженияпредельные значения температуры окружающей среды.

Лекция 8

|следующая лекция ==>
Для стабилизаторов тока|Системы электропитания предприятий электросвязи

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector