Sfera-perm.ru

Сфера Пермь
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что будет если неправильно подключить счетчик с трансформаторами тока

Как определить обмотки трансформатора

Трансформатор является простым электротехническим устройством и служит для преобразования напряжения и тока. На общем магнитном сердечнике наматываются входная и одна или несколько выходных обмоток. Подаваемое на первичную обмотку переменное напряжение индуцирует магнитное поле, которое вызывает появление переменного напряжения такой же частоты во вторичных обмотках. В зависимости от соотношения числа витков изменяется коэффициент передачи.

Порядок выявления дефектов трансформатора

Для проверки неисправностей трансформатора прежде всего надо определить выводы всех его обмоток. Это можно сделать по его маркировке, где указываются номера выводов, обозначение типа (тогда можно воспользоваться справочниками), при достаточно большом размере даже есть рисунки. Если трансформатор непосредственно в каком-то электронном приборе, то все это прояснят принципиальная электрическая схема на устройство и спецификация.

Определив все выводы, мультиметром можно проверить два дефекта: обрыв обмотки и замыкание ее на корпус или другую обмотку.

Для определения обрыва надо «прозвонить» в режиме омметра по очереди каждую обмотку, отсутствие показаний («бесконечное» сопротивление) указывает на обрыв. На цифровом мультиметре могут быть недостоверные показания при проверке обмоток с большим числом витков из-за их высокой индуктивности.

Для поиска замыкания на корпус один щуп мультиметра подсоединяется к выводу обмотки, а вторым поочередно касаются выводов других обмоток (достаточно одного любого из двух) и корпуса (место контакта нужно зачистить от краски и лака). Короткого замыкания быть не должно, проверить так необходимо каждый вывод.

Возможные неисправности

Как известно, любой трансформатор состоит из следующих компонентов:

  • первичная и вторичная катушки (вторичных может быть несколько);
  • сердечник или магнитопровод;
  • корпус.

Таким образом, перечень возможных поломок довольно ограничен:

  1. Поврежден сердечник.
  2. Перегорел провод в какой-либо из обмоток.
  3. Пробита изоляция, вследствие чего имеется электрический контакт между витками в катушке (межвитковое замыкание) либо между катушкой и корпусом.
  4. Изношены выводы катушек или контакты.

Читать также: Флюс для пайки печатных плат

Трансформатор тока Т-0,66 150/5а

Некоторые из дефектов определяются визуально, поэтому трансформатор в первую очередь нужно внимательно осмотреть. Вот на что при этом следует обращать внимание:

  • трещины, сколы изоляции либо ее отсутствие;
  • состояние болтовых соединений и клемм;
  • вздутие заливки или ее вытекание;
  • почернения на видимых поверхностях;
  • обуглившаяся бумага;
  • характерный запах горелого материала.

Если явных повреждений нет, следует проверить устройство на работоспособность при помощи приборов. Для этого нужно знать, к каким обмоткам относятся все его выводы. На преобразователях больших размеров данная информация может быть представлена в виде графического изображения.

Межвитковое замыкание трансформатора: как определить

Еще один распространенный дефект трансформаторов – межвитковое замыкание, распознать его лишь с помощью мультиметра практически невозможно. Тут могут помочь внимательность, острое зрение и обоняние. Проволока изолируется только за счет своего лакового покрытия, при пробое изоляции между соседними витками сопротивление все равно остается, что приводит к местному нагреву. При визуальном осмотре на исправном трансформаторе не должно быть почернений, потеков или вздутия заливки, обугливания бумаги, запаха гари.

В случае, если тип трансформатора определен, то по справочнику можно узнать сопротивление его обмоток. Для этого используем мультиметр в режиме мегомметра. После измерения сопротивления изоляции обмоток трансформатора сравниваем со справочным: отличия более чем в 50% указывают на неисправность обмотки. Если сопротивление обмоток трансформатора не указано, то всегда приводится количество витков, сечение и тип провода и теоретически, при желании, его можно вычислить.

Разновидности

Трансформаторы подразделяются на следующие группы:

  • Которые понижают и повышают.
  • Силовые в большинстве случаев нужны для уменьшения определенного напряжения.
  • Устройства тока для подачи потребителю вечной величины тока и ее задержки в определенном диапазоне.
  • Одно- и многофазные.
  • Для сварки.
  • Импульсные.

В зависимости от работы устройства изменяется и принцип подхода к вопросу о том, как проверять обмотки. Мультиметром можно проверить только маленькие приборы. Силовые машины уже потребуют иного подхода к диагностике проблемы.

Метод прозвонки

Способ диагностики омметром может помочь с вопросом о том, как проверять трансформатор питания. Прозванивают сопротивление между выводами 1 обмотки. Таким образом, создается целостность проводника. Перед таким моментом, происходит осмотр корпуса на предмет нагаров, наплыва из-за нагрева.

После этого, замеряют нынешние значения в Омах и сравнивают их с паспортными данными. Если таковых нет, то понадобится вспомогательная диагностика под напряжением. Прозвонить советуют каждый вывод относительно специального корпуса прибора, куда подключают заземление.

Перед замерами стоит отключить все концы агрегата. Отсоединить от цепи их советуют и в целях личной безопасности. Также необходимо проверить наличие электронной схемы, которая часто есть в новых моделях питания. Её тоже нужно выпаять перед проверкой.

Постоянное сопротивление может говорить о целой изоляции. Значения в пару килоом уже начнут вызывать мысли о пробоях на корпусе. Еще, это может быть из-за скоплений грязи, пыли или воды в воздушных частях устройства.

Как проверить трансформатор на межвитковое замыкание под напряжением

Манипуляции с поданным питанием выполняют, когда думают, как проверить устройство на межвитковое замыкание. Если вы знаете величину питающего напряжения трансформатора, для которого предназначается трансформатор, то замеряют вольтметром значение холостого хода. То есть провода выводные могут быть в воздухе.

Читайте так же:
Как подать показания счетчика за свет мосэнергосбыт

Если значение напряжения отличается от стандартного значения, то делают выводы о настоящем замыкании в обмотках. Если при работе прибора вы услышали треск, искрение, то этот прибор лучше быстро выключить. Он сломан. Есть допустимые погрешности при проверке:

  • Значения напряжения отличаются на 20%.
  • Для сопротивления нормальным считается разброс значений в 50% от паспортных данных.

Замер амперметром трансформатора 220 В на 12 В

Теперь узнаем, как провести диагностику трансформатор тока. Его включают в цепь: штатную или собственно сделанную. Главное, чтобы значения тока было больше стандартного. Замеры амперметром выполняются в первичной цепи и во вторичной.

Ток в первичной цепи сравним с вторичными показателями. Точнее, разделяют первые значения на замеры во вторичной обмотке. Коэффициент трансформации стоит собирать из справочника и сравнивать со своими расчетами. Результаты должны быть схожи.

Трансформатор тока запрещается замерять на холостом ходу. На вторичной обмотке в таком случае может произойти очень высокое напряжение, которое может повреждать изоляцию. Также стоит соблюдать полярность подключения, ведь это влияет на работу всей схемы. Вот вы и узнали, как найти первичную обмотку трансформатора. Ну и самое главное проверить сам блок питания и его мощность.

Если вы не знаете где вход, посмотрите на информацию в паспорте.

Можно ли проверить бытовые понижающие трансформаторы?

Можно попробовать проверить мультиметром и распространенные классические понижающие трансформаторы, используемые в блоках питания для различных устройств с входным напряжением 220 вольт и выходным постоянным от 5 до 30 вольт. Осторожно, исключив возможность коснуться оголенных проводов, подается на первичную обмотку 220 вольт. При появлении запаха, дыма, треска выключить надо сразу, эксперимент неудачен, первичная обмотка неисправна.Если все нормально, то прикасаясь только щупами тестера, измеряется напряжение на вторичных обмотках. Отличие от ожидаемых более чем на 20% в меньшую сторону говорит о неисправности этой обмотки.

Для сварки в домашних условиях необходим функциональный и производительный аппарат, приобретение которого сейчас слишком дорогое удовольствие. Собрать сварочный инвертор своими руками из подручных материалов вполне возможно, предварительно изучив соответствующую схему. Что такое солнечные батареи и как с их помощью создать систему домашнего энергоснабжения, расскажет подробная статья на эту тему.

Может помочь мультиметр и в случае, если имеется такой же, но заведомо исправный трансформатор. Сравниваются сопротивления обмоток, разброс менее 20% является нормой, но надо помнить, что для значений меньше 10 Ом не каждый тестер сможет дать верные показания.

Мультиметр сделал все, что мог. Для дальнейшей проверки понадобятся уже генератор и осциллограф.

Косвенный метод

В состав данного метода входят несколько тестов, каждый из которых отображает состояние прибора в каком-то одном аспекте. Следовательно, все эти тесты желательно проводить в совокупности.

Определение достоверности маркировки выводов обмоток

Для проведения этой проверки мультиметр нужно переключить в режим омметра. Далее нужно попарно «прозвонить» все имеющиеся выводы. Между теми из них, которые относятся к разным катушкам, сопротивление будет равным бесконечности. Если же мультиметр показывает какое-то конкретное значение, значит выводы принадлежат одной катушке.

Тут же можно сравнить замеренное сопротивление с приведенным в справочнике. Если имеет место расхождение более, чем на 50%, значит случилось межвитковое замыкание либо частичное разрушение провода.

Подключение трансформатора к мультиметру

Учтите, что на катушках с большой индуктивностью, то есть состоящих из значительного числа витков, цифровой мультиметр может ошибочно показывать завышенное сопротивление. Желательно в таких случаях пользоваться аналоговым прибором.

Читать также: Новогодние поделки из клеевого пистолета

Проверять обмотки следует постоянным током, который трансформатор преобразовывать не может. При использовании переменного в других катушках будет наводиться ЭДС и вполне возможно, что она окажется достаточно высокой. Так, если на вторичную катушку понижающего трансформатора 220/12 В подать переменное напряжение всего в 20 В, то на выводах первичной появится напряжение в 367 В и при случайном касании их пользователь получит сильный удар током.

Далее нужно определить, какие выводы следует подключать к источнику тока, а какие — к нагрузке. Если известно, что трансформатор понижающий, то к источнику тока нужно подключать катушку с наибольшим числом витков и наибольшим сопротивлением. С повышающим трансформатором все обстоит наоборот.

Все способы измерения силы электрического тока

Но бывают модели, у которых среди вторичных катушек имеются как понижающие, так и повышающие. Тогда первичную катушку можно с определенной долей вероятности распознать по следующим признакам: выводы ее крепятся обычно в стороне от остальных, так же и катушка может находиться на каркасе в отдельной секции.

Возможно, кто-то из его участников имел дело с такими устройствами и может подробно рассказать, как его нужно подключать.

Если во вторичной катушке имеются промежуточные отводы, необходимо распознать ее начало и конец. Для этого нужно определить полярность выводов.

Определение полярности выводов обмоток

В роли измерителя следует использовать магнитоэлектрический амперметр или вольтметр, у которого полярность выводов известна. Прибор нужно подключить к вторичной катушке. Удобнее всего пользоваться теми моделями, у которых «ноль» расположен посредине шкалы, но за неимением такового подойдет и классический — с местоположением «нуля» слева.

Читайте так же:
Технические нормы для установки электросчетчика

Если вторичных катушек несколько, прочие нужно зашунтировать.

Проверка полярности фазных обмоток электрических машин переменного тока

Через первичную катушку нужно пропустить постоянный ток небольшой силы. На роль источника подойдет обычная батарейка, при этом в цепь между ней и катушкой нужно включить резистор — чтобы не получилось короткого замыкания. Таким резистором может послужить лампа накаливания.

Выключатель в цепь первичной катушки устанавливать не нужно: достаточно следя за стрелкой мультиметра замкнуть цепь, коснувшись проводом от лампы вывода катушки, и тут же разомкнуть ее.

При разнополярном подключении — влево.

В момент отключения питания будет наблюдаться противоположная картина: при однополярном подключении стрелка сдвинется влево, при разнополярном — вправо.

На приборе с «нулем» в начале шкалы движение стрелки влево сложнее заметить, так как она почти сразу отскакивает от ограничителя. Поэтому следить нужно внимательно.

По той же схеме проверяются полярности всех остальных катушек.

Мультиметр – очень нужный прибор для замера силы тока, который применяется для выявления неисправностей тех или иных приборов. Какой мультиметр лучше выбрать для домашнего использования – читайте полезные советы по выбору.

Инструкция по проверке диодов мультиметром представлена по ссылке.

Снятие характеристики намагничивания

Чтобы иметь возможность воспользоваться данным методом, нужно подготовиться загодя: пока трансформатор новый и заведомо исправный, снимают его так называемую вольт-амперную характеристику (ВАХ). Это график, отображающий зависимость напряжения на выводах вторичных катушек от величины протекающего в них тока намагничивания.

Схемы снятия характеристик намагничивания

Разомкнув цепь первичной катушки (чтобы результаты не искажались помехами от находящегося поблизости силового оборудования), через вторичную пропускают переменный ток различной силы, измеряя каждый раз напряжение на ее входе.

Мощности используемого для этого блока питания должно быть достаточно для насыщения магнитопровода, которое сопровождается уменьшением угла наклона кривой насыщения до нуля (горизонтальное положение).

Измерительные приборы должны относиться к электродинамической или электромагнитной системе.

По мере использования устройства нужно с определенной периодичностью снимать ВАХ и сравнивать ее с первоначальной. Снижение ее крутизны будет свидетельствовать о появлении межвиткового замыкания.

Проверка трансформатора с помощью мультиметра

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты. Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром?

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока. Если приходится работать с постоянным, вначале его надо преобразовывать.

На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника. При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток.

Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Определение межвиткового замыкания

Другой частой поломкой трансформаторов является межвитковое замыкание. Проверить импульсный трансформатор на предмет подобной неисправности с одним лишь мультиметром практически нереально. Однако, если привлечь обоняние, внимательность и острое зрение, задача вполне может решиться.

Читайте так же:
Чем сломать электронный счетчик

Немного теории. Проволока на трансформаторе изолируется исключительно собственным лаковым покрытием. Если имеет место пробой изоляции, сопротивление межу соседними витками остается, в результате чего место контакта нагревается. Именно поэтому первым делом следует тщательно осмотреть прибор на предмет появления потеков, почернений, подгоревшей бумаги, вздутий и запаха гари.

Далее стараемся определить тип трансформатора. Как только это получается, по специализированным справочникам можно посмотреть сопротивление его обмоток. Далее переключаем тестер в режим мегаомметра и начинаем измерять сопротивление изоляции обмоток. В данном случае тестер импульсных трансформаторов – это обычный мультиметр.

Каждое измерение следует сравнить с указанным в справочнике. Если имеет место расхождение более чем на 50%, значит, обмотка неисправна.

Если же сопротивление обмоток по тем или иным причинам не указано, в справочнике обязательно должны быть приведены иные данные: тип и сечение провода, а также количество витков. С их помощью можно вычислить желаемый показатель самостоятельно.

Проверка бытовых понижающих устройств

Следует отметить момент проверки тестером-мультиметром классических трансформаторов понижения. Найти их можно практически во всех блоках питания, которые понижают входящее напряжение с 220 Вольт до выходящего в 5-30 Вольт.

Первым делом проверяется первичная обмотка, на которую подается напряжение в 220 Вольт. Признаки неисправности первичной обмотки:

  • малейшая видимость дыма;
  • запах гари;
  • треск.

В этом случае следует сразу прекращать эксперимент.

Если же все нормально, можно переходить к измерению на вторичных обмотках. Прикасаться к ним можно только контактами тестера (щупами). Если полученные результаты меньше контрольных минимум на 20%, значит обмотка неисправна.

К сожалению, протестировать такой токовый блок можно только в тех случаях, если имеется полностью аналогичный и гарантированно рабочий блок, так как именно с него и будут собираться контрольные данные. Также следует помнить, что при работе с показателями порядка 10 Ом некоторые тестеры могут искажать результаты.

Измерение тока холостого хода

Если все тестирования показали, что трансформатор полностью исправен, не лишним будет провести еще одну диагностику – на ток трансформатора холостого хода. Чаще всего он равняется 0,1-0,15 от номинального показателя, то есть тока под нагрузкой.

Для проведения проверки измерительный прибор переключают в режим амперметра. Важный момент! Мультиметр к испытуемому трансформатору следует подключать замкнутым накоротко.

Это важно, потому что во время подачи электроэнергии на обмотку трансформатора сила тока возрастает до нескольких сот раз в сравнении с номинальным. После этого щупы тестера размыкаются, и на экране отображаются показатели. Именно они и отображают величину тока без нагрузки, тока холостого хода. Аналогичным образом производится измерение показателей и на вторичных обмотках.

Для измерения напряжения к трансформатору чаще всего подключают реостат. Если же его под рукой нет, в ход может пойти спираль из вольфрама или ряд лампочек.

Для увеличения нагрузки увеличивают количество лампочек или же сокращают количество витков спирали.

Как можно видеть, для проверки даже не потребуется никакой особый тестер. Подойдет вполне обычный мультиметр. Крайне желательно иметь хотя бы приблизительное понятие о принципах работы и устройстве трансформаторов, но для успешного измерения достаточно всего лишь уметь переключать прибор в режим омметра.

Электрика в доме

Проводка, освещение, электрические приборы

Как устроено реле контроля фаз и где его применяют. Как подключить устройство

Во время работы электролинии иногда возникают ситуации связанные с перекосом фаз, при которых электроприборы выходят из строя. Избежать таких аварийных ситуаций поможет реле контроля фаз. Данное устройство контролирует правильное чередование фаз в трехфазной электрической сети. В случае выхода одной из фаз из строя, устройство обесточит электрооборудование.

Прибор сможет защитить оборудования при некачественной подачи электроэнергии, то есть когда в сети слишком малое или слишком большое напряжение.

Читайте также на сайте:

  • Как работает указательное реле
  • Принцип работы реле приоритета нагрузок
  • Как работает реле максимального тока
  • Как устроено импульсное реле
  • Принцип работы и виды релейной защиты
  • Применение реле контроля фаз
  • Как работает тепловое реле
  • Как работает твердотельное реле
  • Принцип работы промежуточного реле
  • Монтаж и подключение реле напряжения

Когда используют реле контроля фаз

Защитное устройство в большинстве случаев защищает автоматические сети управления.

Реле контроля фаз применяется как в бытовых условиях, так и в промышленности. Применение реле защитит и спасет асинхронные двигатели от перегорания. Если в домашней электролинии качество подаваемой электрической энергии оставляет желать лучшего, то просто необходимо устанавливать такое защитное устройство. Эти установки используются в отопительных системах, а также для корректной работы холодильников, кондиционеров, стиральных машин и другой бытовой техники.

Приспособление рекомендуется устанавливать в электролиниях, где происходит учащенное переподключение. Одновременно с этим реле монтируется там, где электрооборудование многократно переставляется из одного места в другое, где возникает риск перепутывания фаз. В случае если при подключении электроприбора все же фазы перепутались, оборудование, возможно, будет работать, но неправильно и быстро выйдет из строя.

Реле способно защитить любое промышленное оборудование, которое является частью трехфазной электрической сети. В надежной защите особенно остро нуждаются импортные электроприборы, которые очень чувствительны к качеству существующего напряжения.

Реле используются в сельском хозяйстве, в пищевой промышленности, в машиностроении.

Читайте так же:
Нужна ли лицензия для замены электросчетчика

Характеристики реле контроля фаз

Технические характеристики реле контроля фаз отличаются друг от друга и зависят от типа и модели прибора. Эти параметры указываются в техническом паспорте защитного устройства. Основными параметрами реле являются:

  • напряжение питания;
  • диапазон настройки контроля падения и повышения напряжения;
  • интервал времени задержки при падении или повышении напряжения;
  • номинальный ток;
  • потребляемая мощность.

Указывается электрическая и механическая износостойкость, число переключающих контактов, а также условия эксплуатации.

К тому же описываются функции, которыми обладают приборы. Например: функция обнаружения обрыва; функция обнаружения перенапряжения, функция обнаружения пониженного напряжения, а также функция обнаружения асимметрии фаз.

Указывается вес прибора и его габариты.

Для изготовления реле применяется микропроцессорная техника, что обеспечивает простое устройство прибора, элементарность настройки, надежную защиту.

Принцип работы реле контроля фаз

Принцип работы реле контроля фаз очень простой и основан на работе гармоника обратной последовательности. При этом прибор чувствует и анализирует возвращающееся напряжение. Если все показатели соответствуют норме, подается сигнал на плату, при помощи которой производится управление, и контакты замыкаются.

В случае выхода показателей за рамки нормы, реле контроля фаз отключит оборудование от электрической сети, при этом загорается красный индикатор. Когда ситуация стабилизируется и параметры восстановятся до нормального состояния, реле автоматически подключит электроприборы. В этом случае загорится зеленая лампочка.

Более усовершенствованные модели оснащены функцией регулировки времени подключения. В простых устройствах это время соответствует постоянному показателю.

Реле контролирует параметры трехфазной электрической сети, распознает ошибки на ранних стадиях. Если возникают серьезные ошибки, устройство производит отключение установленных электроприборов.

Подключение устройства

Практически любой потребитель сможет установить и подключить реле контроля фаз в электрощит. При этом не надо обладать специальными навыками. Клеммы прибора выведены на фронтальную часть корпуса для удобства проведения электромонтажных работ. Клеммы предназначены для медных или алюминиевых проводников, имеющих сечение до 2,5 кв. мм. Защитное устройство устанавливается в распределительном щитке на дин-рейку.

Три фазы и ноль необходимо присоединить к клеммам защитного прибора подходящего значения. А контакты данного устройства следует подсоединить к соленоиду электромагнитного пускателя. В случае если прибор находится в работоспособном состоянии, при этом контактор должен быть включен, контактные соединения должны быть в замкнутом положении, а напряжение подается на электроприборы.

Подключение реле контроля фаз подразумевает соблюдение ряда правил, на которые стоит обратить внимание.

Во-первых, необходимо помнить, что данное реле предназначено только для работы в трехфазной сети. При подключении в однофазную сеть устройство сразу сработает и обесточит линию, так как не будет хватать фаз и реле рассмотрит это как обрыв фаз.

Во-вторых, необходимо точно соблюдать последовательность, то есть фазный провод А подключается к клемме А, фазный провод В подсоединяется к клемме В, а С – к С. Если нарушится данный порядок, реле не включится, так как оно рассмотрит это как перекос фаз.

В-третьих, если защитное реле имеет нулевую клемму, то к ней необходимо подключить нейтральный проводник. Если в конструкции не предусмотрена нулевая клемма, то такой прибор предназначен только для работы в трехфазной сети, которая не имеет нулевого провода.

В случае не подключения нейтрального провода к нулевой клемме, устройство не будет работать, так как включится аварийный режим по причине обрыва нулевого провода.

Передняя панель оснащена регуляторами настройки. На ней находятся индикаторы, которые показывают работоспособность прибора.

  • Как правильно сделать разводку электропроводки в частном доме
  • Как выбрать щупы для мультиметра
  • Какие бывают виды изоляции проводов и как правильно изолировать провода
  • Что нужно знать о фанере?
  • Уличное освещение без проблем

3 Replies to “Как устроено реле контроля фаз и где его применяют. Как подключить устройство”

  1. Виталий25.07.2020 at 22:54

Здравствуйте! Возможно ли установить такое реле на входе электричества в квартиру, дом и т.д.? Или нужно его устанавливать непосредственно перед тем оборудованием которое нужно защитить? Спасибо за ответ.

Электрик, который делал электричество у нас в доме сделал все не так, как было нужно. Я работу принял, потому что многое не знал и через неделю понял, что совершил ошибку. Пришлось все переделывать и нанимать другого электрика. Если бы такую статью прочитал раньше, то и проблем бы не возникло, знал бы как принимать работу и не стал бы переплачивать. Спасибо за информацию!

Наконец-то нашел ответ в Вашей статье на свой вопрос, у меня трехфазная сеть, оказывается последовательность нарушил, столько времени потерял!Спасибо .

Что будет если неправильно подключить счетчик с трансформаторами тока

Замыкания на землю — самый частый вид повреждений в сетях 6-35 кВв. Для защиты от замыканий на землю широко применяют токовые защиты нулевой последовательности, которые подключаются к трансформаторам тока нулевой последовательности.
Вячеслав Аалександрович Горюнов и Аанатолий Ииванович Щеглов, представившие свой материал на новосибирской конференции по заземляющим устройствам, считают, что зачастую к отказам и излишним срабатываниям этих видов защит приводит несоблюдение правил монтажа трансформаторов тока и вторичных цепей.

Анатолий Щеглов, к.т.н., доцент
Вячеслав Горюнов, м.н.с Новосибирский ГТУ

За время внедрения защит от замыканий на землю (ЗНЗ) в кабельных сетях 6(10) кВ накопилась довольно обширная статистика по наиболее частым ошибкам, возникающим при монтаже трансформаторов тока нулевой последовательности (ТТНП), которые приводят к сбоям в работе токовых защит нулевой последовательности.
Рассмотрим специфику данного вопроса на примере электрической сети с резистивно-заземленной нейтралью 6(10) кВ. На рис. 1 представлено распределение составляющих тока однофазного замыкания по сети 6(10) кВ. Векторная диаграмма токов представлена на рис. 2.
Ток замыкания на землю обусловлен емкостями «фаза-земля» неповрежденных (здоровых) фаз всех элементов сети (в основном это кабельные и воздушные линии электропередачи) и резистором, включенным в нейтраль трансформатора (в схеме он обозначен как нейтралеобразующий). Эти токи по обмоткам трансформаторов сети перетекают на поврежденную фазу и в месте ЗНЗ стекают в землю (см. рис. 1).
Из рассмотрения токораспределения, показанного на рис. 1, следует, что в защиту поврежденного присоединения (то есть ТТНП) попадает емкостный ток нулевой последовательности, обусловленный емкостью всей питающей сети (кроме поврежденного элемента), а также ток резистора.
Ток, обусловленный емкостью поврежденного элемента, частично вообще не попадает в ТТНП, частично протекает через окно ТТНП дважды в разных направлениях (по поврежденной и по неповрежденным фазам). Таким образом, он не трансформируется во вторичную обмотку.
В защиту неповрежденного присоединения, наоборот, попадает только ток нулевой последовательности, обусловленный собственной емкостью фаз относительно земли. На рис. 1 это можно проследить по направлениям токов, обтекающих ТТНП присоединения, связывающего шины данной подстанции с питающей сетью.

Читайте так же:
Подсчет электроэнергии по трехфазному счетчику

СЕЛЕКТИВНОСТЬ ЗАЩИТ

На сравнении токов в защите при внутреннем и внешнем замыкании и основана селективность защит от ЗНЗ. В токовых защитах нулевой последовательности сравниваются токи по абсолютным значениям. Селективность обеспечивается, если емкостный ток защищаемого присоединения 3i0Сприсоед значительно меньше тока внешней сети 3i0Свнеш и тока резистора R: |3i0Сприсоед| O (см. рис. 2). При наличии резистора фазы токов могут отличаться менее чем на 180 O , и это должно быть учтено при подборе фазовой характеристики защиты.

Металлическая броня силовых кабелей подлежит заземлению по обоим концам линии и, как следствие, является каналом протекания токов нулевой последовательности.
При неправильном выполнении заземления брони нарушаются рассмотренные выше принципы действия защит. Это иллюстрируется рис. 3 и 4.
На рисунках показано неверное заземление брони кабеля при монтаже ТТНП1. Кабель с металлической оболочкой проходит через окно ТТНП1 и подключен к металлической воронке концевой муфты, которая заземлена.
Рис. 3 иллюстрирует возможность неселективного действия защит
при внешнем замыкании (не на рассматриваемом кабеле). Ток 3i частично (IC S внеш) замыкается по броне кабеля и, проходя через окно ТТНП1, трансформируется во вторичную обмотку. Это может вызвать неселективное действие защиты.

ЗАЩИТНЫЕ ЗАЗЕМЛЕНИЯ

Для исключения подобных ситуаций при монтаже ТТНП необходимо придерживаться определенных правил заземления брони кабеля. При наличии у концевой муфты металлической воронки, соединенной с бронёй кабеля, необходимо воронку и броню изолировать от заземленных частей на участке от ТТНП до воронки, а заземляющий проводник присоединить к воронке и пропустить через отверстие магнитопровода ТТНП в обратном направлении [1], как показано на рис. 5а.
Современные концевые муфты выполняются из изоляционного материала, и если кабель с металлической бронёй не проходит через ТТНП, то заземляющий проводник не следует пропускать через окно ТТНП (рис. 5б). В соответствии с Правилами устройства электроустановок [2] присоединение металлических оболочек и брони кабеля к заземляющему устройству должно осуществляться медным проводником сечением не менее 6 мм 2 . Согласно [2], для электроустановок с изолированной нейтралью сечения заземляющих проводников должны быть выбраны такими, чтобы при протекании по ним наибольшего тока двухфазного КЗ температура заземляющих проводников не превысила 400 O С (кратковременный нагрев, соответствующий полному времени действия защиты и отключения выключателя). При двойных замыканиях на землю токи немногим меньше токов двухфазных КЗ, но они растекаются по земле от одной поврежденной точки до другой, при этом большая часть токов проходит по оболочкам кабелей и может вызвать перегрев и, как следствие, обрыв заземляющего проводника оболочки кабеля при неправильном выборе сечения проводника.
В цепях вторичных обмоток трансформаторов тока (ТТ) предусматривается защитное заземление для обеспечения безопасности персонала в случае повреждения ТТ при перекрытии изоляции между первичной и вторичной обмотками. Согласно [2], вторичные цепи должны заземляться в одной точке на ближайшей от ТТ сборке зажимов либо на зажимах ТТ. Для защит, объединяющих несколько ТТ, заземление цепей производится также в одной точке [3] (рис. 6), так как в этом случае ток не будет протекать по заземляющему устройству и, наоборот, токи, протекающие в ЗУ, не будут наводить помехи в сигнальном проводе.

ВЫВОД

Необходимо тщательно контролировать монтаж вторичных цепей релейной защиты, а также уделять особое внимание заземлению оболочки кабеля при использовании ТТНП.
При замене кабеля либо при подключении второго кабеля к существующему присоединению после завершения монтажа первичных цепей следует вновь проверять правильность монтажа вторичных цепей и цепей заземления.

ЛИТЕРАТУРА

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector