Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чем отличается автоматический выключатель от теплового реле

Тепловая защита электродвигателя. Электротепловое реле.

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Читайте так же:
Доклад по физике использование теплового действия электрического тока

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Типы автоматических выключателей и их различия

Сегодняшний рынок электрической защитной техники предлагает очень широкий выбор автоматических выключателей. Это самые разные модели устройств, подходящие для различных электрических сетей. Рассмотрим же более детально типы и различия автоматических выключателей.

В первую очередь все автоматические выключатели делятся на выключатели постоянного тока, выключатели переменного тока и универсальные, которые работают в электрических сетях, как с постоянным, так и с переменным током.

Одно из главных различий всех автоматических выключателей это показатель номинального тока для каждого конкретного устройства. Минимальный номинальный ток, при котором могут работать автоматические выключатели, составляет 1 А. Пример такого устройства это «Автоматический выключатель АВВ 1-пол. S201 C1». Максимальный номинальный ток – 6300 А.

Читайте так же:
Тепловой расцепитель автоматического выключателя иэк

Еще одно различие автоматических выключателей заключается в показателе номинального напряжения. Преимущественно, большинство таких устройств предназначены для работы в электрических сетях с номинальным напряжением в 220 В, 380 В и 400 В. Для работы в электрической сети в напряжением в 220 В подойдет модель «Автоматический выключатель Legrand 2-полюсный 100А-2М(тип С)». Примером модели, предназначенной для работы в электрической сети с напряжением в 380 В, может служить устройство «Автоматический выключатель ВА47-29 4Р 6А 4,5кА х-ка С ИЭК». Для электрических сетей с номинальным напряжением в 400 В используют «Автоматический выключатель DX 3P C10A 6,0кА(Legrand)».

Все модели автоматических выключателей классифицируются также в зависимости от количества полюсов. Выделяют однополюсные, двухполюсные, трехполюсные и четырехполюсные автоматические выключатели. Примером однополюсной модели может служить «Автоматический выключатель DX 1P C6A 6,0kA(Legrand)». В качестве примера двухполюсного устройства можно привести модель «Автоматический выключатель Legrand 2-полюсный 100А-2М(типС)». Пример трехполюсного выключателя это «Автоматический выключатель АВВ 3-пол. SH203L C20». И, наконец, в качестве примера четырехполюсного автоматического выключателя можно назвать «Автоматический выключатель АВВ 4-пол. S204 C25».

Еще одно важное различие автоматических выключателей это скорость их срабатывания. Здесь выделяют быстродействующие, селективные (с выдержкой времени) и нормальные устройства. Время срабатывания нормальных автоматических выключателей варьируется в пределах от 0,02 с до 0,1 с. Время срабатывания селективных устройств – до 1 с. А время срабатывания быстродействующих автоматических выключателей составляет не больше 0,005 с. Селективные автоматические выключатели используются в тех случаях, когда необходимо установить селективную защиту электрических сетей. Для этого устанавливают несколько различных автоматов такого типа с разными выдержками времени.

Также при выборе автоматического выключателя стоит обратить внимание на его тип по току мгновенного расцепления. Всего выделяют три типа: B, C и D. Устройства типа В срабатывают при 3-5 номинальных токах. Автоматические выключатели типа С срабатывают при 5-10 номинальных токах. А устройства типа D – при 10-20 номинальных токах. Также у некоторых производителей автоматических выключателей введены дополнительные типы, такие как A, K и Z. Автоматические выключатели типа А срабатывают уже при 2-3 номинальных токах. А данные о других типах лучше всего смотреть в таблицах автоматических выключателей конкретно по каждому производителю.

Автоматические выключатели отличаются не только своими характеристиками, но и компаниями-производителями. На сегодняшний день самыми популярными производителями автоматических выключателей являются российская компания «ИЭК», французская компания «Legrand» и немецкая компания «АВВ». Эти компании зарекомендовали себя как производители качественной защитной автоматической техники для электрических сетей всех видов. Их продукция популярна не только на родине этих компаний, но и далеко за их пределами.

Сегодняшний рынок электрической защитной техники предлагает очень широкий выбор автоматических выключателей. Это самые разные модели устройств, подходящие для различных электрических сетей. Рассмотрим же более детально типы и различия автоматических выключателей.

В первую очередь все автоматические выключатели делятся на выключатели постоянного тока, выключатели переменного тока и универсальные, которые работают в электрических сетях, как с постоянным, так и с переменным током.

Одно из главных различий всех автоматических выключателей это показатель номинального тока для каждого конкретного устройства. Минимальный номинальный ток, при котором могут работать автоматические выключатели, составляет 1 А. Пример такого устройства это «Автоматический выключатель АВВ 1-пол. S201 C1». Максимальный номинальный ток – 6300 А.

Еще одно различие автоматических выключателей заключается в показателе номинального напряжения. Преимущественно, большинство таких устройств предназначены для работы в электрических сетях с номинальным напряжением в 220 В, 380 В и 400 В. Для работы в электрической сети в напряжением в 220 В подойдет модель «Автоматический выключатель Legrand 2-полюсный 100А-2М(тип С)». Примером модели, предназначенной для работы в электрической сети с напряжением в 380 В, может служить устройство «Автоматический выключатель ВА47-29 4Р 6А 4,5кА х-ка С ИЭК». Для электрических сетей с номинальным напряжением в 400 В используют «Автоматический выключатель DX 3P C10A 6,0кА(Legrand)».

Читайте так же:
Тепловой эффект от вихревых токов

Все модели автоматических выключателей классифицируются также в зависимости от количества полюсов. Выделяют однополюсные, двухполюсные, трехполюсные и четырехполюсные автоматические выключатели. Примером однополюсной модели может служить «Автоматический выключатель DX 1P C6A 6,0kA(Legrand)». В качестве примера двухполюсного устройства можно привести модель «Автоматический выключатель Legrand 2-полюсный 100А-2М(типС)». Пример трехполюсного выключателя это «Автоматический выключатель АВВ 3-пол. SH203L C20». И, наконец, в качестве примера четырехполюсного автоматического выключателя можно назвать «Автоматический выключатель АВВ 4-пол. S204 C25».

Еще одно важное различие автоматических выключателей это скорость их срабатывания. Здесь выделяют быстродействующие, селективные (с выдержкой времени) и нормальные устройства. Время срабатывания нормальных автоматических выключателей варьируется в пределах от 0,02 с до 0,1 с. Время срабатывания селективных устройств – до 1 с. А время срабатывания быстродействующих автоматических выключателей составляет не больше 0,005 с. Селективные автоматические выключатели используются в тех случаях, когда необходимо установить селективную защиту электрических сетей. Для этого устанавливают несколько различных автоматов такого типа с разными выдержками времени.

Также при выборе автоматического выключателя стоит обратить внимание на его тип по току мгновенного расцепления. Всего выделяют три типа: B, C и D. Устройства типа В срабатывают при 3-5 номинальных токах. Автоматические выключатели типа С срабатывают при 5-10 номинальных токах. А устройства типа D – при 10-20 номинальных токах. Также у некоторых производителей автоматических выключателей введены дополнительные типы, такие как A, K и Z. Автоматические выключатели типа А срабатывают уже при 2-3 номинальных токах. А данные о других типах лучше всего смотреть в таблицах автоматических выключателей конкретно по каждому производителю.

Автоматические выключатели отличаются не только своими характеристиками, но и компаниями-производителями. На сегодняшний день самыми популярными производителями автоматических выключателей являются российская компания «ИЭК», французская компания «Legrand» и немецкая компания «АВВ». Эти компании зарекомендовали себя как производители качественной защитной автоматической техники для электрических сетей всех видов. Их продукция популярна не только на родине этих компаний, но и далеко за их пределами.

Чем отличается реле от контактора: особенности и отличия

Для работы различных электротехнических устройств применяют большое количество разнообразного коммутационного оборудования. В зависимости от назначения и параметров потребления используют большой диапазон электротехнической арматуры. Для включения света в квартире – нужен выключатель. На телефонной станции для соединения с абонентом – можно использовать реле. Запустить в работу электродвигатель средней мощности – используй пускатель. Для подключения питания на двигатель тепловоза – нужен контактор. Почему? Чем отличаются эти коммутационные электротехнические устройства?

Принцип работы реле

Реле – электронное или электромеханическое устройство, которое предназначено для коммутации электрической цепи под действием управляющего сигнала. Чаще всего это катушка, намотанная на сердечник. Под действием приложенного напряжения через нее проходит электрический ток, который создает магнитное поле. Это поле притягивает к сердечнику пластину, которая соединена с исполняющими контактами, коммутирующими вторичную цепь. Как правило, реле коммутирует сигналы с малыми токами и напряжениями.

В паспорте реле указан параметр: напряжение срабатывания. Это говорит о том, что при напряжениях ниже указанной границы, реле будет выключено. При превышении верхней границы оно может выйти из строя.

Читайте так же:
Как защитить тепловое реле от токов короткого замыкания

Классификация реле

По характеру приложенного к сердечнику напряжению реле бывают:

  • Постоянного тока.
  • Переменного тока.
  • Поляризованные.

В зависимости от вида контактной группы:

  • Включающие.
  • Выключающие.
  • Переключающие.

Описание работы контактора

Контактор. Электротехническое устройство по своему принципу работы и устройству похожее на работу реле. При подаче напряжения на управляющую обмотку происходит притягивание рабочей части к сердечнику и с помощью дополнительных контактов блокирование его в этом положении – при снятии управляющего сигнала контактор находится в рабочем положении. Рабочая контактная группа соединяет потребителя с источником тока. Параметры вторичной цепи могут быть намного больше, чем управляющие. Это позволяет с помощью сигнала малой мощности коммутировать очень большие мощности на выходе. Контактор предназначен для коммутации силовых цепей.

Классификация контакторов

По виду приложенного напряжения:

  • Постоянного напряжения.
  • Переменного напряжения.

По роду тока во вторичной цепи:

  1. Постоянного тока.
  2. Переменного тока.

По количеству коммутируемых полюсов:

  • Один полюс.
  • Два полюса и т.д.

По наличию устройства гашения дуги:

  • Присутствует устройство гашения.
  • Отсутствует.

При срабатывании устройства в сети возникают импульсы, которые вредно влияют на другие системы, получающие электропитание из этой же сети, возникают так же и радиопомехи. Соседние устройства могут работать неправильно в этих условиях. Для исключения этого эффекта, некоторые типы контакторов комплектуются системой защиты от помех, которые сами вырабатывают.

Принцип работы контактора: на катушку подается электрически ток, который создает электромагнитное поле, которые намагничивает сердечник.

При включении больших нагрузок имеющих индуктивный характер с помощью контактора, между его контактами возникает электрическая дуга, приводящая к обгоранию активного вещества на пластинах коммутации. Обычно, для улучшения характеристик в месте соединения, используют серебро. Оно имеет довольно большую цену и в случае выгорания приводит к дополнительным расходам на восстановление или замену.

Для того, чтобы исключить этот недостаток, контакторы оснащают дополнительными устройствами, способными гасить возникающую во время соединения электрическую дугу. Контакторы способны соединять нагрузку с очень большим напряжением и током.

Чем похожи реле и контакторы?

РелеКонтактор
Наличие катушки индуктивности для срабатывания устройстваПрисутствуетПрисутствует
Наличие сердечника для электромагнитного срабатыванияДаДа
Наличие контактной группы вторичной цепиЕстьЕсть
Возврат в исходное состояние при снятии напряжения с управляющей обмоткиВозвращаетсяВозвращается
Герметичность корпусаТолько специальные видыТолько специальные виды
Количество срабатыванийБольшое количествоБольшое количество
Наличие возвратной пружины для принятия исходного положенияПрисутствуетПрисутствует

Чем отличается реле от контактора?

РелеКонтактор
Параметры коммутируемых цепейСлабые сигналы, напряжения, токиПотребители высокой мощности
Поведение при снятии управляющего напряженияВозвращается в исходное состояниеОстается во включенном состоянии, благодаря дополнительным контактам
Наличие устройства гашения электрической дугиОтсутствует, потому что нет надобностиЕсть в наличии для работы с большими мощностями, в других случаях не комплектуется
Применение в промышленностиВ электронных схемах, слаботочных электрических схемахВ схемах коммутации энергопотребителей большой мощности.
Наличие специального дополнительного контакта для удержания устройства во включенном состоянииНет, но есть возможность использования дополнительного контакта из вторичной цепиПрисутствует
Частота срабатываний в единицу времениНебольшое количествоБольшой количество

Подводя итог: реле и контактор выполняют одну и ту же функцию. По устройству принципиальных отличий не имеет. Работают с электрическими сигналами разными мо мощности.

Чем отличается пускатель от контактора согласно ГОСТ и правил.

Даже среди профессиональных электриков нередко возникают жаркие споры, какой коммутационный аппарат считать пускателем, а какой контактором.

Не особо разбирающиеся, и то и другое попросту называют пускачами. Что уж говорить о рядовых потребителях, которые с этими устройствами могут столкнуться всего пару раз за всю жизнь.

Читайте так же:
Тепловое поражение электрическим током это тест

Некоторые ошибочно в первую очередь смотрят на дугогасительные камеры, считая, что если они есть, тогда перед ними контактор.

Якобы они нужны для гашения токов, начиная с 5-й величины. Пятая величина – ток равный I=100А.

При этом думая, что пускатель рассчитан только на малые токи (до 100А).

Сторонники данной классификации даже придумали собственную градацию:

    реле – это устройства для малых токов
    пускатели – для средних
    контакторы – для больших токов

Все это конечно не соответствует действительности. В таких заблуждениях, скорее всего, виновата одна довольно популярная марка, а именно ПМЛ.

У этих моделей пускатели рассчитаны на токи от 10 до 100А, а контакторы от 10 до 800А. Отсюда и пошла неразбериха.

Якобы, если устройство более 100А, значит оно относится к контакторам. На некоторых упаковках даже указываются, казалось бы, прямо противоположные надписи. С одной стороны пишется:

    ПМ – пускатель магнитный

И тут же с другой:

    Contactor

Чему верить и что говорят об этом правила и документация? Чтобы это понять, в первую очередь найдем определения этих устройств и посмотрим в чем заключаются отличия.

Вот что говорит об этом действующий на данный момент ГОСТ 17703-72 “Аппараты электрические коммутационные. Основные понятия.”

Здесь в качестве самовозврата используется пружина. Возможность частых коммутаций токов обеспечивается самой конструкцией.


Некоторые вопросы возникают относительно последней формулировки – “приводимый в действие двигательным приводом”. Какой элемент считать двигательным приводом?

Чтобы разобраться, опять обратимся к ГОСТу и найдем соответствующее определение.


Можно ли считать, что в контакторе установлен эл.магнитный привод? Что об этом говорит другой ГОСТ 24856-2014 “Арматура трубопроводная. Термины и определения.”


Как видите, это именно то, что нужно. В нашем случае, подвижные контакты как раз таки и приводятся в действие эл.магнитным полем катушки.


Принцип действия в контакторах тянущий – при подаче напряжения часть сердечника втягивается и неподвижные контакты замыкаются с подвижными.

Однако помимо вышеприведенных определений контактора, есть еще несколько. Например, в СТО 173330282.27.010.001-2008 “Электроэнергетика. Термины и определения.” приведена более упрощенная формулировка:

А вот что говорится в ГОСТ 60309-4-2013 “Вилки, розетки и соединители промышленного назначения”.

Смысл во всех этих расшифровках названий один и тот же, и глобальных разночтений не наблюдается.

Теперь давайте рассмотрим определение пускателя.

Разобраться в этом нам поможет ГОСТ Р 500030.4.4-2012 “Аппаратура распределения и управления низковольтная”.

Самое главное, что вы должны понять из этого определения:

Например, в нем в качестве защиты от перегрузки может выступать тепловое реле.

Вытащите его, и ваш пускатель превратится в контактор. А еще в пускателях могут быть встроены защиты от обрыва фазы, от падения напряжения и др.

Все это и превращает обычный контактор в пускатель.

Исходя из этого и выводится главное правило, как отличить контактор от пускателя:

    контактор – это ОДИНОЧНЫЙ двухпозиционный коммутационный аппарат
    пускатель – это комбинация коммутационных устройств



Таким образом, назначение устройства вытекает из самого названия “пускатель” – от слова “пуск” двигателя. Контактор от слова “контакт”, то есть просто коммутировать, соединять и разъединять цепь (без ее защиты).

Никакие другие самовольные интерпретации не имеют под собой нормативного обоснования. Чем чаще вы будете обращаться именно к документам, а не к “электрикам с опытом”, тем проще будет докопаться до истины и самое главное, всегда можно будет убедительно доказать свои слова и правоту.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector