Бытовой счетчик электроэнергии реактивную
Компенсация реактивной мощности: прямая экономия без обмана счетчика
С пoмoщью малoзатратных уcтрoйcтв, дoбавленных в cеть переменнoгo тoка, прoмышленнoе предприятие мoжет ocтавить за coбoй, без преувеличения, дo трети «oбычных» затрат на электрoэнергию. И oбманывать cчетчик при этoм вoвcе не придетcя. Нужно вcего лишь укротить реактивную мощноcть, гуляющую по кабелям, как ей заблагораccудитcя. Здеcь мы раccкажем о воздейcтвии «незваной мощноcти» на энергозатраты производcтва, а также о cовременном оборудовании, способном не только сгладить последствия вредного явления, но и обратить зло на пользу.
К глубокому сожалению, сегодня многие из нас не владеют поднятой проблемой даже в общих чертах. А если и понимают ее, то чаще всего недооценивают, не усматривая в компенсации реактивной мощности сколь-нибудь ощутимого источника для экономии. Но ведь здесь даже не надо быть специалистом. Поскольку все мы, так или иначе, если не на производственном, так на бытовом уровне, являемся постоянными потребителями электроэнергии. Уже поэтому ее качество и стоимость нам должны быть столь же не безразличны, как качество и стоимость подаваемой в дом питьевой воды.
Не удивлюсь, если кто-то из читателей откровенно возмутится, заподозрив, что ему собрались элементарно морочить голову. Он знает, что ток в розетке либо есть, либо его по каким-то причинам нет. Последнее неприятно, нужно срочно звонить диспетчеру, чтобы тот принял меры. Но о каком качестве самой энергии здесь идет речь? Как его определять — на вкус, на цвет, на запах? Можете ерничать по этому благодатному поводу и дальше, но имейте в виду — тут ведь как в политике, если мы не займемся качеством энергии, оно само нами займется.
Цена миллисекундных отключений
Буквально под самый миллениум правительства в США и Канаде, оценив последствия от провалов напряжения (вспомните заголовки в наших изданиях — «Нью-Йорк во мраке», «Вашингтон окунулся во тьму»), организовали общенациональные энергетические обследования большинства промышленных предприятий. Целью такой профилактики (просто-таки тянет сказать «медицинской», уж очень похоже) ставилась выработка новой концепции защиты промышленного оборудования от нарушений электроснабжения. Вам интересна цена вопроса? Так вот стоимость ущерба от плохого качества электрической энергии в экономике двух крупнейших американских стран эксперты определили суммой, которая превышает 150 млрд. долл. в год.
У нас в России, как водится, официальной статистики по сему поводу не существует. Хотя, если основательно пошарить по информационным сусекам, можно обнаружить некоторые измерения местного масштаба, тоже дающие почву для размышления. Например, в Северо-Западном федеральном округе один крупный поставщик электроэнергии, которому почему-то не спалось на лаврах постоянного дохода, взял да и подсчитал, сколько перепадов напряжения случилось конкретно на 12 участках мощностью от 5 до 30 МВА и каковы оказались последствия.
Измеряли ровно 10 месяцев, на большее по каким-то причинам не хватило. За это время отметили 858 перепадов, 42 из которых повлекли ощутимые сбои в сети и финансовые потери. Что примечательно, на всех этих 12 участках основными потребителями энергии были предприятия с несложной технологией. Тем не менее, финансовые потери были оценены в сумму 600 тыс. евро, а максимальный убыток, пришедшийся на отдельно взятый участок, составил 165 тыс. евро. Особо подчеркнем, что штрафных санкций никто никому предъявлять не собирался, замеряли так, для общего интереса, а потому о «подтасовке» речи быть не может. Тогда откуда взялись те самые перепады количеством в сотни и многотысячные потери в инвалюте?
Столь пристальное внимание северо-западной статистике мы уделили не только потому, что другой нет. Тем исследователям спасибо сказать надо уже за то, что они подчеркнули назревшую, как опухоль, проблему. К сожалению, регламентируемая сегодня система защиты предприятия основана на старой, как детекторный приемник, норме проектирования, которая допускает от 2 до 3 аварийных отключений электроэнергии в год, хотя в разных регионах в настоящее время они происходят с частотой до 40 раз в год.
За последние годы характер потребления электроэнергии претерпел существенные изменения. В технологических процессах большинства предприятий, будь то завод или современная медицинская клиника, становится все больше низковольтных приводных электродвигателей, микропроцессорной техники, систем телекоммуникации. И разве вы сами не замечали, как тот же любимый всеми Интернет часто буквально обрывается короткими по продолжительности (несколько мСек) провалами и перегрузками питающего напряжения. Но если для пользователя сети такое прерывание досадно, но не страшно, то сложному автоматизированному производству провал напряжения в десятые доли секунды может грозить частичной или полной остановкой. Прямой и косвенный ущерб тогда надоест считать.
Напрашивается сакраментальный вывод, что нужно просто как следует прижать тех же энергетиков, чтобы они тщательнее следили за качеством электроэнергии в своих сетях (думается, теперь и несведущий понял, о чем мы говорим). Но дело в том, что энергосистемы, не располагая порой полной информацией о режимах работы потребительских электроустановок, никак не могут влиять на них и не имеют возможности добиться полного контроля над процессом управления, поскольку виной всему реактивная мощность.
«Незваная мощность»
Теория точна, но суха. Согласно ей, реактивная мощность (РМ) — это величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока. А синусоидальность потому и возникает, что потребляющие электроэнергию устройства, в которых создается магнитное поле (моторы, дроссели, трансформаторы, индукционные нагреватели, сварочные генераторы), вызывают отставание тока от напряжения (сдвиг фаз), обусловленное наличием индуктивности.
Основу любого электродвигателя или трансформатора составляют витки медного провода, намотанного на магнитную основу. Поэтому в процессе работы они уже в силу законов физики за счет высокой магнитной проницаемости и самоиндукции генерируют реактивную мощность. А та, совершая колебательные движения от нагрузки к источнику (генератору) и обратно, распространяется по сети.
Казалось бы, «незваной мощности» надо только радоваться, поскольку она ниоткуда взялась. Да вот незадача: согласно теории, РМ характеризуется задержкой (ток отстает) между синусоидами фаз напряжения и тока сети. В моменты, когда синусоиды напряжения и тока имеют противоположные знаки, мощность не потребляется нагрузкой, а подается обратно по сети в сторону генератора. И мотается эта «добавочка» на вашем же счетчике, причем не в обратную сторону.
Впрочем, генерация РМ порождает и другие отрицательные явлениями. Среди них:
- повышение активных потерь (т. к. увеличивается полная мощность);
- снижение нагрузочной способности (т. к. возрастает токовая нагрузка на питающий кабель и распределительный трансформатор);
- большее падение напряжения (из-за увеличения реактивной составляющей тока питающей сети).
Таким образом, отрицательное воздействие РМ на электрическую сеть несоизмеримо больше, чем положительное. Недаром в конце 80-х годов, т.е. во времена заката СССР, на всех промышленных предприятиях были директивно смонтированы конденсаторные батареи. К сожалению, в дальнейшие 90-е годы многие предприятия-потребители электроэнергии отключали имевшиеся у них компенсирующие устройства, не беспокоясь о поддержании их работоспособности по причине недостаточного финансирования, а некоторые — и вовсе демонтировали КРМ.
Желанный косинус
Уровень РМ двигателей, генераторов и сети предприятия в целом характеризуется коэффициентом мощности cosw — это численное отношение активной мощности к полной мощности. Например, cosw асинхронных двигателей составляет примерно 0,7; сварочных трансформаторов — примерно 0,4; cosw станков — не превышает 0,5 и т. д. Поэтому полное использование мощности сети возможно только при компенсации ее реактивной составляющей.
Компенсация реактивной мощности может быть индивидуальной (местной) и централизованной (общей). В первом случае параллельно нагрузке подключают один или несколько (батарею) косинусных конденсаторов, во втором – некоторое количество конденсаторов (батарей) подключается к главному распределительному щиту.
Индивидуальная компенсация — самый простой и наиболее дешевый способ компенсации реактивной мощности. Число конденсаторов (конденсаторных батарей) соответствует числу нагрузок, и каждый конденсатор расположен непосредственно у соответствующей нагрузки (рядом с двигателем и т. п.). Такая компенсация хороша только для постоянных нагрузок (например, один или несколько асинхронных двигателей с постоянной скоростью вращения вала), то есть там, где реактивная мощность каждой из нагрузок (во включенном состоянии нагрузок) с течением времени меняется незначительно и для ее компенсации не требуется изменения номиналов подключенных конденсаторных батарей. Поэтому индивидуальная компенсация ввиду неизменного уровня реактивной мощности нагрузки и соответствующей реактивной мощности компенсаторов называется также нерегулируемой.
Централизованная компенсация — компенсация реактивной мощности с помощью одной регулируемой установки КРМ, подключенной к главному распределительному щиту. Применяется в системах с большим количеством потребителей (нагрузок), имеющих большой разброс коэффициента мощности в течение суток, то есть для переменной нагрузки (например, несколько двигателей, размещенных на одном предприятии и подключаемых попеременно). В таких системах индивидуальная компенсация неприемлема, так как, во-первых, становится слишком дорогостоящей (при большом количестве оборудования устанавливается большое количество конденсаторов), и, во-вторых, возникает вероятность перекомпенсации (появление в сети перенапряжения).
В случае централизованной компенсации конденсаторная установка оснащается специализированным контроллером (автоматическим регулятором реактивной мощности) и коммутационно-защитной аппаратурой (контакторами и предохранителями). При отклонении значения cosw от заданного значения контроллер подключает или отключает определенные конденсаторные батареи (компенсация осуществляется ступенчато). Таким образом, контроль осуществляется автоматически, а мощность подключенных конденсаторов соответствует потребляемой в данный конкретный момент времени реактивной мощности, что исключает генерацию реактивной мощности в сеть и появление в сети перенапряжения.
Конкретное предложение
Оборудование для борьбы с РМ выпускают сейчас многие компании и у нас, и за рубежом. Для наглядности рассмотрим предлагаемое ими разнообразие на примере отечественной «Матик-электро». Оборудование для компенсации реактивной мощности с помощью низковольтных КРМ-0,4 кВ (аналог УКМ 58, АКУ, УККРМ), производимое этой компанией и оснащенное автоматическими регуляторами европейского уровня, способно почти на треть сократить расходы любого производства на электроэнергию. Конденсаторные установки существенным образом снижают нагрузку на трансформаторы и кабели и тем самым повышают надежность сетей.
Компенсация реактивной мощности осуществляется на базе высоковольтных конденсаторных установок, применяется в электросетях 6,3 / 10,5 / 35 кВ с высоковольтной нагрузкой. Конденсаторные установки компенсации реактивной мощности высоковольтные КРМ (аналог УКЛ 56, УКЛ 57) — 6,3 / 10,5 / 35 кВ производятся на реактивные мощности от 150 до 50 000 кВАр. Компенсация реактивной мощности происходит в ручном режиме, путем подключения необходимого числа батарей косинусных конденсаторов. Высоковольтные установки компенсации реактивной мощности производятся на базе компенсационных конденсаторов ведущих мировых производителей, в корпусах порошковой окраски, имеют срок службы 150 тыс. часов.
Регулируемая установка компенсации реактивной мощности в автоматическом режиме, под управлением микропроцессорного регулятора улучшает cosw путем подключения/отключения необходимого числа батарей конденсаторов. Они выпускаются с шагом от 20 до 450 кВАр и суммарной мощностью до 100 МВАр. Производятся также установки, в которых компенсация реактивной мощности осуществляется одновременно с фильтрацией гармоник в сети.
Тиристорные КУ
Такие конденсаторные установки — лучшее, а иногда и единственное решение, когда необходимо осуществлять компенсацию реактивной мощности нагрузки в короткий период времени. Конденсаторные установки с тиристорными ключами применяются в цехах с резкопеременной нагрузкой. К таким относятся цеха с большим количеством подъемно-транспортных механизмов, штамповочных установок и прессов, сварочных аппаратов.
В отличие от установок с контакторами, тиристорные КУ обладают быстродействием на 2 порядка выше, т.к. не требуется задержка срабатывания на время разряда конденсатора. В тиристорных установках после подачи сигнала на коммутацию тиристор «сам выбирает» время подключения в момент, когда напряжение в сети и на конденсаторе равны. Задержка включения составляет не более 20 мс.
При этом следует отметить, что конденсаторы подключаются без пусковых токов. Это продлевает срок службы конденсаторов. В связи с отсутствием движущихся механических контактов тиристорные конденсаторные установки имеют больший ресурс. Для защиты тиристоров применяются специальные быстродействующие предохранители.
Другие решения
Косинусные, фазовые конденсаторы для компенсации реактивной мощности используются для местной компенсации (подключение параллельно двигателям и т.п.). Большой гарантированный срок их эксплуатации (более 100 000 часов) обеспечивается передовыми разработками в области пленочных технологий для конденсаторов, в том числе — вакуумной обработкой диэлектрика. Конденсаторы для компенсации реактивной мощности производятся на напряжения от 0,4 до 10,5 кВ и мощности до 700 кВАр.
Контакторы для компенсации реактивной мощности — новое поколение электрических аппаратов на токи от 10 до 130 А с широкими функциональными возможностями и современным дизайном. Все аппараты имеют европейский и российский сертификаты и применяются в установках компенсации реактивной мощности на напряжения 0,4 — 0,69 кВ. Контакторы для установок компенсации реактивной мощности производятся на номиналы 5 — 75 кВАр и имеют контакты предвключения для ограничения тока через компенсирующий конденсатор в момент включения. Данные контакторы сглаживают пусковой ток и продлевают срок службы конденсаторов в установках компенсации реактивной мощности.
Выключатели нагрузки для установок компенсации реактивной мощности Federal и ВНК производятся с предохранителями или без них (исполнение — выключатель нагрузки) в соответствии со стандартами IEC/EN 60947-3 и ГОСТ. Они были разработаны для обеспечения мгновенного выключения цепей установок компенсации реактивной мощности с различными токами. Выключатели нагрузки незаменимы в установках компенсации реактивной мощности на большие токи — мощность свыше 200 кВАр.
Трансформаторы тока разборные TA.R (аналог Т-0.66, ТНШЛ, ТШ), на ток от 250 до 5000 А, для быстрого монтажа, предназначены для облегчения установки их на шину (от 20х30 мм до 160х80 мм) и кабель (диаметр от 20 до 80 мм). Данные трансформаторы удобны как внешний датчик тока для установок компенсации реактивной мощности.
Цены всегда актуальные
Nav view search
Навигация
(066) 12-84-695
(096) 04-67-914
Работаем с НДС
mail@schetchiki.com.ua
Пн-Пт 9:00-18:00
Сб, Вс: выходной
Киев, Днепр, Харьков
Искать
- Магазин
- Доставка
- Оплата
- Как покупать?
- Условия обслуживания
- Статьи
- Контакты
- О нас
Это определенный тариф, по которому у физических и юридических лиц есть возможность продавать выработанную с применением возобновляемых природных источников (солнечное излучение, ветер и т.п.) электроэнергию государству.
Согласно Постановлению НКРЭ от 27.02.2014 № 170, бытовые потребители электрической энергии, которые производят электрическую энергию из альтернативных источников энергии
подробнее..
Чтобы покупателям было лучше ориентироваться среди предлагаемых на рынке Украины моделей счетчиков электроэнергии, мы приглашаем всех ознакомиться с вводной статьей, подробно рассказывающей об основных отличиях между ними. В нашем интернет-магазине все счетчики представлены в следующих категориях
подробнее..
• Суть многотарифной системы
Многие из нас слышали об этом термине из области энергетики. Тем не менее, мало кто задумывался о том, какие реальные возможности по экономии собственных финансовых средств можно извлечь при подобном способе учета потребляемой электроэнергии. Ведь в данном вопросе сходятся воедино интересы не только потребителя электроэнергии, но и ее непосредственного производителя.
подробнее..
• Тарифы на электрическую энергию для бытовых потребителей (населения)
Согласно постановлению национальной комиссии, выполняющей государственное регулирование в сфере энергетики от 26.02.2015 №220, тарифы для населения, начиная с 1-го марта 2017 г. следующие
подробнее..
Чем отличается электронный счетчик от индукционного?
• Устройство и принцип работы индукционного счетчика
Еще совсем недавно, в каждой квартире, частном доме или гараже можно было увидеть знакомый всем с детства электросчетчик, имеющий алюминиевый вращающийся диск и счетный механизм в виде нескольких цифровых барабанов. Такая конструкция присуща индукционному типу счетчика электроэнергии
подробнее..
Токовые нагрузки на провода, кабели и шнуры, покрытые резиновой или ПХВ изоляцией приведены исходя из расчета максимально допустимого нагрева жилы до 65 °C. Температура окружающего воздуха принята равной 25 °C, температура земли 15 °C. При определении количества проводов или жил многожильного провода, которые прокладываются в одной трубе, не принимаются в расчет нулевые и заземляющие провода. Токовые нагрузки, указанные в нижеприведенной таблице
подробнее..
Как выбрать счетчик электроэнергии?
При коммерческом учете электроэнергии обязательно согласуйте выбранную модель электро счетчика в РЭС.
Каждый счетчик электроэнергии, представленный в нашем магазине, имеет сертификат Украины, гос. поверку и гарантию завода-изготовителя от 2 до 5 лет.
Чтобы покупателям было лучше ориентироваться среди предлагаемых на рынке Украины моделей счетчиков электроэнергии, мы приглашаем всех ознакомиться с вводной статьей, подробно рассказывающей об основных отличиях между ними. В нашем интернет-магазине все счетчики представлены в следующих категориях:
Все модели счетчиков, представленные в нашем магазине, электронного типа! Наличие электромеханического отсчетного устройства у некоторых из них, следует расценивать всего лишь как стремление производителя удешевить конструкцию счетчика, сохранив его класс точности!
На вышеприведенной структурной схеме видно, что первоначально счетчики электроэнергии классифицируют по типу цепей переменного тока (однофазные или трехфазные), в которых будет проводиться измерение. Следующей категорией является тарифность. Наряду с однотарифными счетчиками электроэнергии, потребителям предлагаются и модели многотарифных счетчиков. Преимущество последних заключается в их возможности измерять потребляемую мощность отдельно, для каждого из нескольких заданных интервалов суток. Такое дифференцирование применяется при многотарифном учете электроэнергии, позволяющем сэкономить на правильном распределении потребляемой мощности в течении суток. Еще одной отличительной особенностью счетчиков является тип измеряемой ими электроэнергии. Большинство однофазных счетчиков измеряют только активную энергию, и лишь малая их часть способна оценивать реактивную. Трехфазные счетчики могут измерять характеристики как активной, так и реактивной электроэнергии, а также учитывать ее направление (см. руководства по эксплуатации трехфазных счетчиков). Реактивная энергия является результатом работы емкостных или индуктивных видов нагрузки, таких как например, электродвигатели. Учет и компенсация реактивной энергии чрезвычайно важны для уменьшения затрат на потребление и улучшения качества электроэнергии.
Конструкции однофазных счетчиков могут отличаться количеством измерительных элементов. Более дешевые модели содержат один датчик тока, расположенный в фазной цепи прибора. Электросчетчики подороже имеют датчик и в нулевой цепи. Два измерительных датчика защищают счетчик от кражи электроэнергии, которая возможна через манипуляцию с подключаемыми проводами.
Каждая модель счетчика электроэнергии имеет уникальное номинальное рабочее напряжение исходя из приведенного ряда:
- 220 В;
- 3х100 В;
- 3х220 В;
- 3×57,7/100 В;
- 3х127/220 В;
- 3х220/380 В.
Номинальная (не путать с минимальной) и максимальная сила тока, определенная для счетчиков, ограничена следующим перечнем:
- 5-7,5 А;
- 5-10 А;
- 5-60 А;
- 5-100 А;
- 5-120 А;
- 10-80 А;
- 10-100 А.
При выборе счетчика эти паспортные значения необходимо рассматривать с учетом определенного для модели типа подключения к цепям генератора и нагрузки:
Такая организация способов подключения позволяет наиболее полно удовлетворять разнообразным рабочим условиям, при которых происходят измерения параметров электроэнергии. Например, выбор счетчика, имеющего трансформаторное подключение, может быть обусловлен требованиями по измерению значений напряжения или тока, выходящих за пределы номинально допустимых по паспорту для моделей прямого подключения.
Все модели современных счетчиков электроэнергии имеют в своем составе один или несколько специализированных интерфейсов для приема-передачи данных, либо управления нагрузкой:
В зависимости от типа встроенного интерфейса, счетчик может использоваться как для автономной работы, не требующей взаимодействия между другими устройствами, так и для работы в составе сложных контрольно-измерительных систем, например АСКУЭ (автоматизированные системы коммерческого учета электроэнергии). Определенные интерфейсы (оптопорт) предназначены только лишь для обеспечения сервисных функций, таких как программирование тарифного модуля, или считывание данных аварийных событий. Модели, содержащие релейный выход, могут быть использованы для управления подключением нагрузки. Управление может происходить дистанционно (по интерфейсу RS-232, RS-485, радиоканалу), либо инициироваться в определеное время (при помощи внутренних часов многотарифного счетчика), что является необходимым для многих потребителей электроэнергии.
Счетчики электроэнергии: виды, особенности продажа в интернет-магазине СтройРем (Нижний Новгород)
Счетчик электроэнергии – это контрольно-измерительный прибор, который используется для определения и учета количества потребляемой электрической энергии конечным потребителем. Данное устройство применяется практически в любом объекте, подключенному к общей системе энергоснабжения. Используют их при прокладке сети внутри многоэтажных и частных домов, коммерческих, производственных и любых других зданиях. Широкий ассортимент счетчиков электроэнергии представлен в нашем интернет-магазине СтройРем.
Счетчики электроэнергии: классификация и основные виды
Существует много различных критериев, по которым классифицируют счетчики электрической энергии. К самым важным из них относятся:
- тип изменяемой электроэнергии;
- принцип измерения;
- тип сети, к которой подключается прибор учета электроэнергии;
- класс точности;
- тарифность;
- конструкция и прочее.
Выбор счетчика по типу измеряемой электроэнергии
Электросчетчики являются приборами, которые предназначены на проведение измерений активной и реактивной потребляемой мощности.
- Активная мощность – это энергия, которая полностью преобразуется в полезное действие и не поступает обратно на электросчетчик. К активной электрической энергии можно отнести питание бытовых электроприборов. Например, лампы преобразуют ток в свет и тепло, электроплита или электрочайник – в тепло, громкоговорители – в звук и прочее.
- Реактивная мощность – это энергия, которая частично преобразуется в полезное действие, а частично возвращается в виде остаточной энергии на счетчик после прохождения по цепи. Примером такого вида потребления является работа конденсаторов, пусковых установок, холодильных приборов, печей.
Реактивная мощность, по сути, показывает количество неэффективно используемой энергии потребителем вследствие несовпадения тока сети с его напряжением (отставание или опережение при протекании). Такая энергия обязательно должна учитываться производственными предприятиями. Именно по этой причине, данные организации обязаны устанавливать у себя счетчики реактивной мощности.
Бытовой потребитель, в свою очередь, не должен обеспечивать качество передачи электротока на линии. Согласно типовых договоров с энергосбытом, оплата происходит конечным потребителем только за полезно потребляемую электрическую энергию или, другими словами, – активную мощность. Поэтому все бытовые электросчетчики являются более простыми в конструкции и, относительно, недорогими приборами учета активной электроэнергии. Ввиду этого:
- счетчики активной мощности – это бытовые приборы учета;
- счетчики реактивной мощности – это промышленные приборы учета.
- счетчики активной и реактивной мощности – это комплексный прибор, позволяющий производить учет суммарного (полного) энергопотребления пользователем.
Счетчики электроэнергии: виды по принципу измерения
По принципу измерения мощности потребления, бытовые счетчики делят на два типа:
- Индукционный счетчик электроэнергии. Электромеханический прибор учета, который производит измерения вследствие возникновения электромагнитной индукции. Такие устройства отличаются относительно невысокой точностью проведения измерений. При этом они обладают рядом преимуществ, среди которых: высокая надежность, нетребовательность к качеству энергии, меньшая цена.
- Электронный счетчик электроэнергии. К достоинствам данных устройств относится функциональность и точность проведения измерений. Данные устройства могут оснащаться возможностью многотарифного измерения электроэнергии, автоматической передачи показателей и прочими возможностями. Такие приборы способны учитывать суммарную потребляемую мощность (активную + реактивную). За счет этого достигается высокая чувствительность измерений. К недостаткам данных приборов учета можно отнести более высокую стоимость, требовательность к качеству тока.
Счетчик электроэнергии: одно- и трехфазные
Счетчик учета электроэнергии бывают двух основных типов подключения:
- Однофазные счетчики электроэнергии. Подключаются к сети переменного тока. В основном, представляют собой бытовые приборы учета. Подкачаются к сети 220-250 В с номинальной частотой 50 или 60 Гц.
- Трехфазные счетчики электроэнергии. Рассчитаны на работу в сети постоянного электрического тока. В основном, производятся с расчетом на промышленное использование. Также могут устанавливаться в качестве контрольно-измерительного прибора учета потребления электричества в жилом фонде.
Более подробная информация есть в каталогах нашего интернет-магазине: счетчики электроэнергии однофазные и счетчики электроэнергии трехфазные. У нас вы можете ознакомиться с особенностями выбора данных приборов, а также купить счетчик электрической энергии с нужными параметрами.
Класс точности счетчика электрической энергии
Точность измерения электрической энергии является одной из основополагающих характеристик выбора счетчика. Параметр указывает на допустимые погрешности в измерениях в процентном соотношении. При этом погрешность может быть, как в большую сторону (в пользу энергосбыта), так и в меньшую сторону (в пользу конечного потребителя).
Счетчики электроэнергии выпускаются следующих классов точности:
Числовое обозначение в маркировке класса точности – это и есть процентный показатель, указывающий на размер погрешности. Например, счетчик класса 2S имеет погрешность +/2%.
Высокоточными являются электронные счетчики. Менее точные – индуктивные. С относительно недавнего времени, не допускается применение приборов учета электрической энергии с классом точности более 2S. Таким образом, большинство установленных ранее счетчиков класса 2,5s – 5S нуждаются в замене. Данная норма прописана на законодательном уровне. Согласно нормативам, допускается использовать следующие виды счетчиков:
Таблица. Классы точности счетчиков по группам потребителей
Потребитель
Норма потребления
Класс счетчика
Бытовой потребитель (установка в частный дом или квартиру)
На вводе в многоквартирное здание (жилой фонд)
Опыт Практикующего Инженера: Мифы про устройства компенсации реактивной мощности
Опыт Практикующего инженера: Мифы про устройства компенсации реактивной мощности
За многие годы проектирования, производства и запуска конденсаторных установок мне приходилось сталкиваться с вопросами, которые поначалу приводили в недоумение меня и весь наш техотдел. Они касались и конденсаторных установок, и в целом компенсации реактивной мощности. А иногда звонящие звонят и сразу говорят, что им нужна конденсаторная установка. Казалось бы не Клиент, а мечта. Но при выяснении нюансов оказывалось, что человек ждет от установки того, чего она сделать не может – ни теоретически, ни практически.
В этой статье я расскажу о некоторых заблуждениях, относительно конденсаторных установок – с которыми чаще всего приходилось сталкиваться.
Первый случай. Мы включили конденсаторную установку, но расходы на реактив не уменьшились.
Звонят в техподдержку. Звонящий — не наш Клиент
— Проконсультируйте, пожалуйста. Мы поставили конденсаторную установку, но у нас платежи по реактиву не изменились. В чем причина?
Мы начинаем задавать вопросы для проверки правильности подключения, правильности программирования регулятора. Есть много объективных и субъективных причин, из-за которых устройство компенсации реактива может работать хуже ожидаемого.
По ответам мы понимаем, что все включено правильно, установка расположена и подключена в нужной точке.
Тогда мы предлагаем — отправить нам почасовое потребление реактивной энергии, чтоб удостовериться в правильности параметров самой установки и получаем ответ:
— Я не могу Вам отправить почасовку. У меня счетчик не считает реактив. Мы как платили по среднему до установки конденсаторной, так и платим.
Мы объяснили, что для начала нужно поменять существующий счетчик на счетчик,который считает все. И актив и реактив. И только после этого можно и правильно подобрать конденсаторную и увидеть экономию. Не получится экономить то, что нельзя посчитать.
Заменили счетчик уже Клиенту, через месяц работы посмотрели на параметры и рассчитали требуемые характеристики. Клиенту не пришлось покупать новую КРМ — мы модернизировали существующую (добавили ступеней, уменьшили значение минимальной ступени, заменили регулятор 6-ступенчатый на 8- ступенчатый).
Косинус Фи — 0,98
Платит за реактив 15% от того, что платил раньше.
Все (со счетчиком) — окупилось за 4 месяца.
Второй случай. Правда, что конденсаторная установка ПРЕВРАЩАЕТ реактивную энергию в активную.
Для того, чтоб развернуто ответить на этот вопрос, нужно написать в этом посте курс электротехники — поэтому прошу просто поверить мне, как достаточно сведущему человеку.
Это неправда.
Это две разные ЭЛЕКТРИЧЕСКИЕ энергии и конденсаторная установка – это не волшебный преобразователь, который берет реактивную энергию и превращает ее в активную.
При подключении конденсаторной установки в сеть, компенсируется реактивная энергия (опять же — не вся) и сокращается потребление активной энергии (в некоторых случаях доходит до 3,2 % — данные из личного опыта).
Все это приводит к уменьшению затрат на электроэнергию. Это тот редкий случай, когда счет от «Гор/Облэнерго» радует.
Но волшебного превращения реактива в актив не происходит.
Третий случай. Мы установили конденсаторную установку, но она не свела реактив к нулю.
Ошибка – считать, что конденсаторная установка уберет полностью реактив. Часть реактивной энергии потребляется оборудованием – например, двигателями. Они генерируют реактив, но часть из него потребляют.
Поэтому, если Вам будут обещать, что сведут реактив к нулю, т.е. в счетах за электричество напротив строки «Реактивная энергия» будет стоять ноль – знайте, что Вас вводят в заблуждение.
Нормальным значение реактивной энергии, является тогда, когда оно в пределах 20-25% от значения потребленной активной энергии. То есть,если в счете за электроэнергию у Вас потребление активной энергии 100000 кВт/ч., а потребление реактивной 20-25000 кВар – значит у Вас все нормально с реактивом и вы платите за реально потребленную реактивную энергию
Четвертый случай: Откровенный обман – компенсация реактивной энергии в быту.
В интернете много рекламы приборов, продавцы которых утверждают, что включив их в сеть – Вы уменьшите расход электроэнергии на 50%. Агрессивность рекламы заставила меня более внимательно изучить их фантастический прибор.
И что оказалось.
Оказывается, что эта дикая экономия достигается благодаря тому, что в сеть подключают конденсаторную батарею (конденсатор), которая:
1. Убирает реактивную энергию
2. Преобразует реактив в актив
И еще много чего делает.
По первому пункту – компенсация реактивной энергии в бытовой сети никак не повлияет на Ваш кошелек, т.к. все бытовые пользователи платят только за активную энергию
По второму пункту – это откровенное введение в заблуждение. В науке нет ни теоретических обоснований подобной возможности, ни практических реализаций.
Понятно, что не все люди разбираются во всех этих тонкостях, т.к. каждый из нас мастер в своем деле (кроме футбола и политики – тут мы все мастера:).
Именно этим и пользуются господа-придумщики всяких волшебных устройств.
UPD: Тема описанных эконом-устройств более широко раскрыта по ссылке: http://electrik.info/main/voprosy/245-pribory-dlya-yekonomii-yelektroyenergii-mif-ili.html
Надеюсь, данная статья будет вам полезна и оградит от ошибок.
Все,что я и сотрудники Вольт Энерго пишем в разделе «Статьи» на нашем сайте – «основано на реальных событиях» J