Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Биполярный транзистор как стабилизатор тока

Биполярный транзистор как стабилизатор тока

Простой стабилизатор напряжения с защитой по току.

Ниже представлена схема стабилизатора напряжения для питания низковольтной аппаратуры. Основные отличия этой схемы — простота, доступная элементная база, возможность плавной регулировки как выходного напряжения, так и тока, при котором происходит срабатывание защиты.

Собственно стабилизатор выполнен по общеизвестной схеме на параллельном стабилизаторе (регулируемый стабилитрон) TL431 и мощном биполярном транзисторе VT1. В схему введён «измерительный» резистор R2 для контроля потребляемого нагрузкой тока. При превышении тока нагрузки или КЗ на выходе стабилизатора падение напряжения на R2 становится достаточным для открывания транзистора VT2. При открывнии VT2 открывается также VT3 и шунтирует источник опорного напряжения. При этом выходное напряжение уменьшается практически до нуля, тем самым защищая регулирующий транзистор от перегрузки по току. Для обеспечения возможности точной установки порога срабатывания защиты по току используется подстроечный резистор R3, включённый параллельно R2. Светодиод LED1 красного цвета индицирует срабатывание защиты, а LED2 (зелёный) — наличие выходного напряжения.

Детали и настройка:

В качестве регулирующего ( VT1) применён составной транзистор КТ827А, обеспечивающий нормальную работу параллельного стабилизатора при изменении тока нагрузки и достаточный ток при сохранении надёжности устройства в целом. Транзисторы VT2 и VT3 — любые маломощные соответствующей проводимости. VT2 желательно выбрать с большим коэффициентом передачи по постоянному току — не ниже 200. Светодиоды — любые подходяцего цвета, хоть АЛ307. Подстроечные резисторы — проволочные с червячным редуктором СП5-2 для возможности более точной установки и обеспечения стабильности настроек. Резистор R2 — СП5-16МВ 5, остальные резисторы — МЛТ 0.25.

Правильно собранный стабилизатор начинает работать сразу, необходимо лишь выставить нужное выходное напряжение стабилизатора (R6) и , нагрузив стабилизатор реостатом, выставить ток, при котором происходит срабатывание защиты (R3). При указанных на схеме номиналах деталей стабилизатор обеспечивал ток нагрузки до 14А и срабатывание защиты при 15А. Если необходимо обеспечить срабатывание защиты при меньших токах, то может понадобиться увеличение номинала резистора R2. При R2=0.1 Ом минимальный ток срабатывания защиты равен примерно 8А. Если необходимо получение бОльших токов нагрузки, то необходимо параллельное включение двух или более транзисторов с выравнивающими резисторами в эмиттерах. В любом случае транзисторы должны быть составные. Для обеспечения работы защиты при токе 20-22А номинал R2 необходимо уменьшить вдвое, включив параллельно такой же резистор. В любом случае при практическом изготовлении необходимо соблюдать все требования для подобного рода устройств. Регулирующий транзистор должен быть установлен на достаточно большом радиаторе.

Ниже преведена ещё одна версия стабилизатора, где после кратковременного срабатывания защиты схема остаётся в выключенном состоянии. И так будет продолжаться до отключения блока питания от сети и разряда фильтрового конденсатора. Такая схема больше подходит для лабораторного источника питания. Это достигнуто путём включения вместо транзистора VT3 оптотиристора.

UA1ZH © 2007

Стабилизатор тока. Источник, генератор. Стабилизировать. Схема, конструкция, устройство, проектирование, расчет. Рассчитать. Стабильный. Принцип действия.

Устройство и принцип действия источника стабильного тока. (10+)

Источник тока. Принцип действия. Расчет

1 2 3

Источники стабильного тока применяются, когда нужно обеспечить заданный ток вне зависимости от напряжения и сопротивления нагрузки. Источник (генератор) тока обладает большим дифференциальным сопротивлением. Это означает, что сила тока через генератор тока в рабочем режиме мало зависит от напряжения на нем. В идеале дифференциальное сопротивление источника тока должно быть равно бесконечности, то есть ток не должен зависеть от напряжения. Реальные источники тока обладают дифференциальным сопротивлением от 1 МОм.

Обозначение источника (стабилизатора, генератора) тока на схемах

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Типичные реализации источника, генератора тока

Приведенные схемы обладают рядом серьезных недостатков. Схема A1 на полевом транзисторе — одна из худших реализаций. Рассчитать ее параметры невозможно, так как они зависят от индивидуальных особенностей экземпляра полевого транзистора. Нужный ток устанавливается подбором резистора. Схема может функционировать, когда сопротивление резистора равно 0. Дифференциальное сопротивление (а значит стабильность тока) схемы невысоко, нередко оно бывает меньше 200 кОм. На работу этого варианта сильно влияет температура полевого транзистора. Преимущество одно — это действительно двухполюсник. Он не требует подвода дополнительного питания. Это бывает очень важно в некоторых схемах.

Схема A2 обладает гораздо лучшими характеристиками. В случае применения транзисторов с большим коэффициентом передачи тока, схема может иметь дифференциальное сопротивление выше 1 МОм (10 МОм, или даже больше). Но вывода у схемы не два, а три. Так что она может быть включена только в некоторые электронные схемы, в которых один вывод источника тока подключен к шине питания или общему проводу, и есть возможность подвести к одному из выводов общий провод или питание соответственно. На рисунке приведена схема с подключением к шине питания. Схема с подключением к общему проводу выглядит совершенно аналогично с той разницей, что ее надо перевернуть и поменять проводимость транзистора и полярность стабилитрона.

Читайте так же:
Сетевой выпрямитель стабилизатор напряжения тока

Обратите внимание, что в схеме в качестве источника опорного напряжения используется стабилитрон. Для стабилитронов характерна зависимость напряжения стабилизации от температуры. Помните об этом при проектировании источников тока. Стабилитрон может быть источником шумов. Чтобы уменьшить их влияние на работу устройства параллельно стабилитрону можно подключить керамический конденсатор емкость 0.1 мкФ.

Расчет транзисторного источника тока

Принцип действия приведенной схемы основан на том, что напряжение на резисторе R1 поддерживается равным напряжению на стабилитроне минус напряжение насыщения эмиттерного перехода транзистора. Напряжение на резисторе пропорционально току нагрузки. Так что этот ток также поддерживается на заданном уровне. Если ток нагрузки падает, то напряжение на резисторе также падает. Ток базы транзистора растет, что приводит к открытию транзистора и росту тока. Если ток нагрузки растет, то транзистор наоборот закрывается.

Ориентировочный расчет транзисторного источника тока можно выполнить так. Выбираем стабилитрон. Вычисляем напряжение на резисторе R1.

[Напряжение на резисторе R1, В] = [Напряжение стабилизации стабилитрона, В] — [Напряжение насыщения эмиттерного перехода транзистора, В]

Исходя из необходимой силы тока, определяем сопротивление резистора R1.

[Сопротивление резистора R1, Ом] = [Напряжение на резисторе R1, В] / [Необходимая сила тока источника, А]

[Сопротивление резистора R2, Ом] = 0.8 * ([Напряжение питания, В] — [Напряжение стабилизации стабилитрона, В]) * [Коэффициент передачи тока транзистора] / [Необходимая сила тока источника, А]

[Максимально возможное напряжение на нагрузке, В] = [Напряжение питания, В] — [Напряжение на резисторе R1, В] — [Напряжение насыщения коллектор — эмиттер транзистора, В]

[Мощность транзистора, Вт] = ([Напряжение питания, В] — [Напряжение на резисторе R1, В]) * [Необходимая сила тока источника, А]

[Мощность стабилитрона, Вт] = 0.25 * [Необходимая сила тока источника, А] * [Напряжение стабилизации стабилитрона, В] / [Коэффициент передачи тока транзистора]

[Мощность резистора R1, Вт] = [Напряжение на резисторе R1, В] * [Необходимая сила тока источника, А]

[Мощность резистора R2, Вт] = ([Напряжение питания, В] — [Напряжение стабилизации стабилитрона, В]) ^ 2 / [Сопротивление резистора R2, Ом]

1 2 3

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Составной транзистор. Схемы Дарлингтона, Шиклаи. Расчет, применение.
Составной транзистор — схемы, применение, расчет параметров. Схемы Дарлингтона, .

Токовое управление. Транзисторная схемотехника, схема. Ток. Электроник.
Усилитель ВЧ. Пример схемы специально для биполярного транзистора. Схемотехничес.

Простой импульсный прямоходовый преобразователь напряжения. 5 — 12 вол.
Схема простого преобразователя напряжения для питания операционного усилителя.

Изготовление дросселя, катушки индуктивности своими руками, самому, са.
Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы.

Схемы Подключения Биполярных Транзисторов

В импортных усилителях очень часто применяется мощная комплементарная пара 2SA и 2SC Мы рассмотрим их позднее при подробном изучении схемы усилительного каскада с общим эмиттером.


Конденсатор Ср является разделительным. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Вольт-амперная характеристика стабилитрона представлена на рис.
Биполярные транзисторы



По рабочей частоте транзисторы делятся на низкочастотные, — рабочая частота не свыше 3 МГц, среднечастотные — 3…30 МГц, высокочастотные — свыше 30 МГц.

Рисунок 3.

Автор статьи предлагал регулировать частоту вращения коллекторного двигателя изменением длительности импульсов в обмотке управления ОУ.

Но параметры германиевых транзисторов были нестабильны, их самым большим недостатком следует считать низкую рабочую температуру, — не более

Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством.

СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА. ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ [РадиолюбительTV 42]

Характеристики транзистора, включенного по схеме об

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя.

Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях.

Заключение Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством.

Активный режим транзистора — это нормальный режим работы транзистора.

При этом параметры транзистора тут вообще никакой роли не играют. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.

Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Работу усилителя хорошо видно на временных диаграммах. Рисунок 2.
Как работает транзистор? Режим ТТЛ логика / Усиление. Анимационный обучающий 2d ролик. / Урок 1

Читайте так же:
Сделать самому стабилизатор тока

Схема с общей базой

При этом входное сопротивление очень мало, а выходное — велико.

Напомним, что реактивное сопротивление конденсатора Хс, Ом, можно вычислить по формуле: Для постоянного тока реактивное сопротивление конденсаторов стремится к бесконечности. В выходной цепи для сигнала требуется нагрузка. Кроме биполярных существуют униполярные полевые транзисторы, у которых используется лишь один тип носителей — электроны или дырки.

Активный режим транзистора — это нормальный режим работы транзистора. Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении IВ коллекторный ток уже не изменяется.

Это усиление осуществляется за счет энергии источника питания. Напряжение 0,6В это напряжение на переходе Б—Э, и при расчетах о нем не следует забывать!

Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи. Достоинства каскада по схеме с общим эмиттером: 1. Для того, чтобы лучше понять, как работает эмиттерная стабилизация, надо рассмотреть схему включения транзистора с общим коллектором ОК.

Схема включения биполярного транзистора с общим коллектором


Работа транзистора в ключевом режиме Прежде, чем изучать работу транзистора в режиме усиления сигнала, стоит вспомнить, что транзисторы часто используются в ключевом режиме. Эмиттерные повторители схемы с общим коллектором применяют для согласования высокого выходного сопротивления источника сигнала с низким входным сопротивлением нагрузки. Быстродействие БТ зависит от толщины базового слоя БС. Теперь проследим саму работу данной схемы: источник питания 1.

Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки читай одной партии. И модельный ряд постоянно увеличивается, позволяя решать практически все задачи, поставленные разработчиками. Рисунок 7. Следовательно, для усилителей постоянного тока нижняя граничная частота усиления равна нулю переходные конденсаторы не требуются, а для разделения каскадов необходимо предусматривать специальные меры. На рисунке изображена схема работы транзистора в ключевом режиме.

В эмиттерном повторителе используется схема включения транзистора с общим коллектором ОК. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! База является управляющим электродом.
Биполярные транзисторы. Принцип действия.

Характеристики транзистора, включённого по схеме оэ:

Основные элементы схемы: транзистор, резистор RL и цепь выхода усилителя с внешним питанием.

Благодаря незначительной толщине слоя микроны и большой величине градиента концентрации отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Где транзисторы купить? Транзисторы по праву считаются одним из великих открытий человечества.

При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном — обратное. Его также обозначают как Исходы из выше сказанного транзистор может работать в четырех режимах: Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.

Ответ может быть да а может и нет. Поскольку ток коллектора в десятки раз больше тока базы, этим объясняется тот факт, что коэффициент усиления по току составляет десятки единиц. Схема с общим коллектором ОК Практические варианты схем включения транзисторов структуры п-р-п и р-п-р приведены на рис. В литературе такое название почему-то почти не встречается, а вот в кругу радиоинженеров и радиолюбителей используется повсеместно, всем сразу понятно, о чем идет речь.

Схемы включения биполярного транзистора

Ваш email:. Для того чтобы без расчетов первоначально оценить величины RC-элементов, входящих в состав схем рис. Поэтому плотность компоновки элементов в МОП- интегральных схемах значительно выше. Коллектор имеет более положительный потенциал , чем эмиттер Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.

Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален. Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Такой режим работы транзистора рассматривался уже давно. Повышение частоты приводит к снижению реактивной ёмкости коллекторного перехода, что приводит к его существенному шунтированию и ухудшению усилительных свойств каскада. Выводы транзистора звонятся как два диода, соединенные в общей точке в области базы транзистора.

Устройство и принцип действия

В биполярном транзисторе используются два типа носителей заряда — электроны и дырки, отчего такие транзисторы и называются биполярными. Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя.

Читайте так же:
Ток холостого хода стабилизаторов напряжения

Иногда она применяется для ослабления влияния нагрузки на характеристики высокочастотных генераторов и синтезаторов частоты. Все эти схемы показаны на рисунке 2. Поэтому при построении схем усилителей постоянного тока используют схемы с непосредственными связями между каскадами.
Ключевой режим работы транзистора Схема с общим эмиттером

Основные параметры и характеристики биполярного транзистора.

Продолжаем разбирать все, что связано с транзисторами и сегодня у нас на очереди одна из наиболее часто используемых схем включения. А именно схема включения биполярного транзистора с общим эмиттером (ОЭ)! Кроме того, на базе этой схемы мы рассмотрим основные параметры и характеристики биполярного транзистора. Тема важная и интересная, так что без лишних слов переходим к делу!

Название этой схемы во многом объясняет ее основную идею. Поскольку схема с общим эмиттером, то, собственно, эмиттер является общим электродом для входной и выходной цепей. Вот как выглядит схема с ОЭ для n-p-n транзистора:

А вот так — для p-n-p:

Давайте снова разбирать все процессы для случая с использованием n-p-n транзистора. Для p-n-p суть остается той же, меняется только полярность.

Входными величинами являются напряжение база-эмиттер ( U_ <бэ>) и ток базы ( I_ <б>), а выходными — напряжение коллектор-эмиттер ( U_ <кэ>) и ток коллектора ( I_ <к>). Обратите внимание, что в этих схемах у нас отсутствует нагрузка в цепи коллектора, поэтому все характеристики, которые мы далее рассмотрим носят название статических. Другими словами статические характеристики транзистора — это зависимости между напряжениями и токами на входе и выходе при отсутствии нагрузки.

Характеристики биполярного транзистора.

Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач.

И первая на очереди — входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:

В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_ <кэ>):

Входная характеристика, в целом, очень похожа на прямую ветвь ВАХ диода. При U_ <кэ>= 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_ <кэ>ветвь будет смещаться вправо.

Переходим ко второй крайне важной характеристике биполярного транзистора — выходной! Выходная характеристика — это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы.

Для нее также указывается семейство характеристик для разных значений тока базы:

Видим, что при небольших значениях U_ <кэ>коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения — изменение тока очень мало и фактически не зависит от U_ <кэ>(зато пропорционально току базы). Эти участки соответствуют разным режимам работы транзистора.

Для наглядности можно изобразить эти режимы на семействе выходных характеристик:

Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.

Для управления током базы мы увеличиваем напряжение U_ <бэ>, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано 🙂

Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_ <кэ>(возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно — при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока beta , несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:

На участке 2 транзистор находится в режиме насыщения. При уменьшении U_ <кэ>уменьшается и напряжение на коллекторном переходе U_ <кб>. И при определенном значении U_ <кэ>= U_ <кэ medspace нас>напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина — эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.

В этом режиме основные носители заряда начинают двигаться из коллектора в базу — навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_ <кэ>ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.

Читайте так же:
Стабилизатор тока в нагрузке

Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора!

И, наконец, область 3, лежащая ниже кривой, соответствующей I_ <б>= 0 . Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.

Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_ ) от тока коллектора для биполярного транзистора BC847:

Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды! Разным значениям температуры соответствуют разные кривые.

Основные параметры биполярных транзисторов.

Давайте теперь рассмотрим, какие существуют параметры биполярных транзисторов, и какие предельные значения они могут принимать.

I_ <КБО>( I_ ) — обратный ток коллектора — ток через коллекторный переход при определенном обратном напряжении на переходе коллектор-база и разомкнутой цепи эмиттера.
I_ <ЭБО>( I_ ) — обратный ток эмиттера — ток через эмиттерный переход при определенном обратном напряжении на переходе эмиттер-база и разомкнутом выводе коллектора.
I_ <КЭО>( I_ ) — аналогично, обратный ток коллектор-эмиттер — ток в цепи коллектор-эмиттер при определенном обратном напряжении коллектор-эмиттер и разомкнутом выводе базы.
U_ <БЭ>( V_ ) — напряжение на переходе база-эмиттер при определенном напряжении коллектор-эмиттер и токе коллектора.
U_ <КБ medspace проб>( V_ <(BR) CBO>) — напряжение пробоя перехода коллектор-база при определенном обратном токе коллектора и разомкнутой цепи эмиттера. Например, для все того же BC847:

U_ <ЭБ medspace проб>( V_ <(BR) EBO>) — напряжение пробоя эмиттер-база при определенном обратном токе эмиттера и разомкнутой цепи коллектора.
U_ <КЭ medspace проб>( V_ <(BR) CES>) — напряжение пробоя коллектор-эмиттер при определенном прямом токе коллектора и разомкнутой цепи базы.
Напряжения насыщения коллектор-эмиттер и база-эмиттер — U_ <КЭ medspace нас>( V_ ) и U_ <БЭ medspace нас>( V_ ).
Конечно же, важнейший параметр — статический коэффициент передачи по току для схемы с общим эмиттером — h_ <21э>( h_ ). Для этого параметра обычно приводится диапазон возможных значений, то есть минимальное и максимальное значения.
f_ <гр>( f_) — граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттером. При использовании сигнала более высокой частоты транзистор не может быть использован в качестве усилительного элемента.
И еще один параметр, который следует отнести к важнейшим — I_ <К>( I_ ) — максимально допустимый постоянный ток коллектора.

И на этом заканчиваем нашу сегодняшнюю статью, большое спасибо за внимание! Подписывайтесь на обновления и не пропустите новые статьи 🙂

Как работают транзисторы — простое объяснение

в Справочник 0 1,205 Просмотров

Транзистор — полезный и практичный компонент, который можно использовать для создания множества интересных проектов. В этом практическом руководстве вы узнаете, как работают транзисторы, и сможете использовать их в своих будущих схемах.

На самом деле это довольно просто, если вы изучите основы. Мы сосредоточимся на двух наиболее распространенных транзисторах: биполярных и MOSFET.

Транзистор может работать в 2 режимах:

  1. ключевой режим
  2. режиме усиления

В ключевом режиме транзистор работает как электронный переключатель. Он может включать и выключать ток. Проще всего представить себе транзистор как реле без каких-либо движущихся частей. Транзистор похож на реле в том смысле, что вы можете использовать его для включения и выключения чего-либо.

В режиме усиления транзистор может быть включен частично и это режим работы полезен при усилении слабого сигнала.

Как работают биполярные транзисторы

Начнем с классического биполярного NPN транзистора. У него три вывода:

  • База (b — base)
  • Коллектор (c — collector)
  • Эмиттер (e — emitter)

Когда транзистор включен, то через него может течь ток от коллектора к эмиттеру. Когда он выключен, ток не течет. В приведенном ниже примере транзистор выключен. Это означает, что через него не может протекать ток, поэтому светодиод не светиться.

Чтобы включить транзистор, вам необходимо подать напряжение около 0,7 В на базу относительно эмиттера. Если бы у вас была батарея 0,7 В вы могли бы подключить ее между базой и эмиттером и транзистор бы включился. Поскольку у большинства из нас нет батареи с напряжением 0,7 В, то как мы можем включить транзистор?

Легко! Переход транзистора база-эмиттер работает как диод. Диод имеет прямое напряжение, которое он «берет» из имеющегося напряжения питания. Если вы последовательно подключите резистор, то остальная часть напряжения упадет на резисторе. Таким образом, вы автоматически получите около 0,7 В, добавив всего один резистор.

Это тот же принцип используется для ограничения тока через светодиод, чтобы он не сгорел.

Если вы еще добавите кнопку, то вы можете управлять транзистором и, следовательно, светодиодом, включая и выключая его с помощью кнопки:

Выбор номиналов компонентов схемы

Чтобы выбрать необходимые номиналы компонентов, вам нужно знать еще один важный параметр транзистора — коэффициент усиления.

Когда ток течет от базы к эмиттеру, транзистор включается, так что больший ток может течь от коллектора к эмиттеру.

Между величинами этих двух токов существует связь. Это называется усилением транзистора. Для транзистора общего назначения, такого как BC547 или 2N3904 коэффициент усиления составляет в среднем около 100. Это означает, что если вы подадите ток 0,1 мА на переход база-эмиттер, то по направлению коллектор-эмиттер вы получите ток 10 мА (в 100 раз больше).

Какое должно быть сопротивление резистора R1, чтобы получить ток 0,1 мА?

Если у нас в качестве источника питания батарея 9 В и мы знаем что падение напряжения на переходе база-эмиттер составляет 0,7 В, то на резисторе останется 8,3 В. Чтобы найти сопротивление резистора вы можете использовать закон Ома:

То есть вам необходимо использовать резистор сопротивлением 83 кОм. Это не стандартное значение, поэтому из стандартного номинального ряда возьмем самое близкое значение равное 82 кОм.

Резистор R2 предназначен для ограничения тока, проходящего через светодиод. Сопротивление 1 кОм будет достаточным.

Как подобрать транзистор

NPN-транзистор является наиболее распространенным типом биполярных транзисторов. Но есть еще один тип биполярного транзистора — PNP-транзистор, который работает точно также как и NPN-транзистор, только все токи идут в противоположном направлении.

При выборе транзистора важно учитывать, какой ток транзистор может пропустить через себя без повреждения. Это называется током коллектора (Ic ).

Как работает MOSFET транзистор

MOSFET транзистор (полевой транзистор) — еще один очень распространенный тип транзистора. Он также имеет три вывода:

  • Затвор (G — gate )
  • Исток (S — source )
  • Сток (D — drain )

N-канальный MOSFET работает также как и биполярный NPN-транзистор, но с одним важным отличием:

  • В биполярном NPN транзисторе ток, протекающий через переход база-эмиттер определяет силу тока, текущего через переход коллектор-эмиттер.
  • В MOSFET транзисторе напряжение между затвором и истоком определяет, какой ток будет течь от стока к истоку.

Вот почему для MOSFET транзистора вам не нужен резистор, включенный последовательно с затвором, как в случае с NPN-транзистором. Вместо этого вам понадобится резистор, подключенный между затвором и минусом питания, чтобы надежно отключить транзистор, когда кнопка не нажата:

Поскольку напряжение на затворе определяет, сколько тока может протекать от стока к истоку, вы можете подумать о добавлении резистора последовательно с кнопкой. Таким образом, у вас получиться делитель напряжения, с помощью которого вы можете выставить точное напряжение на затворе.

Как выбрать MOSFET-транзистор

В приведенном выше примере используется N-канальный полевой транзистор. Полевые транзисторы с P-каналом работают так же, только ток течет в противоположном направлении, а напряжение затвор-исток должно быть отрицательным.

На выбор доступны тысячи различных полевых транзисторов. Но если вы хотите построить схему, приведенную выше, то вы можете применить BS170 или IRF510.

При выборе полевого транзистора следует учитывать две вещи:

  1. Пороговое напряжение затвор-исток. Для включения транзистора требуется более высокое напряжение.
  2. Непрерывный ток стока. Это максимальный ток, который может протекать через транзистор.

Есть и другие важные параметры, о которых следует помнить, в зависимости от области применения. Но это выходит за рамки данной статьи. Помните об этих двух параметрах, и у вас будет хорошая отправная точка.

Зачем нужен транзистор?

У меня часто возникает вопрос: зачем нам транзистор? Почему бы не подключить светодиод и резистор напрямую к батарее?

Преимущество транзистора заключается в том, что вы можете использовать небольшой ток или напряжение для управления гораздо большим током и напряжением.

Это очень полезно, если вы хотите управлять такими вещами, как двигатели, мощные светодиоды, динамики, реле и многое другое при помощи микроконтроллера / Raspberry Pi / Arduino. Выход микроконтроллера может обеспечить всего несколько миллиампер при напряжении 5 В. Поэтому, если вы хотите управлять, например уличным освещением 230 В, вы не можете сделать это напрямую микроконтроллером

Вместо этого вы можете использовать реле. Но даже реле обычно требует большего тока, чем может обеспечить выход микроконтроллера. Поэтому вам понадобится транзистор для управления реле:

Транзистор как усилитель

Транзистор также может работать в качестве усилителя слабых сигналов, то есть он может находиться в любом положении между «полностью включено» и «полностью выключено».

Это означает, что слабый сигнал может управлять транзистором и создать более сильную копию этого сигнала на переходе коллектор-эмиттер (или сток-исток). Таким образом, транзистор может усиливать слабые сигналы.

Вот простой усилитель для управления динамиком сигналом прямоугольной формы:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector