Sfera-perm.ru

Сфера Пермь
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Активная мощность счетчика формула

Что такое реактивная мощность и как с ней бороться

Реактивная мощность определяет периодический обмен электрической энергией между источником и электроприемником с двойной частотой по отношению к частоте переменного тока без преобразования ее в другой вид энергии и может рассматриваться как характеристика скорости обмена электроэнергией между источником и магнитным полем электроприемника.

Суммарная энергия, связанная с существованием этой составляющей мгновенной мощности, равна нулю. Ее появление, очевидно, связано с наличием в системе производства, передачи и распределения электроэнергии элементов, в которых возможно периодическое накопление и последующий возврат определенного количества энергии. В противном случае обмен электрической энергией между источником и электроприемником был бы невозможен.

Физика процесса и практика применения установок компенсации реактивной мощности

Чтобы разобраться с понятием реактивной мощности, вспомним сначала, что такое электрическая мощность. Электрическая мощность – это физическая величина, характеризующая скорость генерации, передачи или потребления электрической энергии в единицу времени.

Чем больше мощность, тем большую работу может совершить электроустановка в единицу времени. Измеряется мощность в ваттах (произведение Вольт х Ампер). Мгновенная мощность – это произведение мгновенных значений напряжения и силы тока на каком-то участке электрической цепи.

Физика процесса

В цепях постоянного тока значение мгновенной и средней мощности за какой-то промежуток времени совпадают, а понятие реактивной мощности отсутствует. В цепях переменного тока так происходит только в том случае, если нагрузка чисто активная. Это, например, электронагреватель или лампа накаливания. При такой нагрузке в цепи переменного тока фаза напряжения и фаза тока совпадают и вся мощность передается в нагрузку.

Если нагрузка индуктивная (трансформаторы, электродвигатели), то ток отстает по фазе от напряжения, если нагрузка емкостная (различные электронные устройства), то ток по фазе опережает напряжение. Поскольку ток и напряжение не совпадают по фазе (реактивная нагрузка), то в нагрузку (потребителю) передается только часть мощности (полной мощности), которая могла бы быть передана в нагрузку, если бы сдвиг фаз был равен нулю (активная нагрузка).

Активная и реактивная мощности

Часть полной мощности, которую удалось передать в нагрузку за период переменного тока, называется активной мощностью. Она равна произведению действующих значений тока и напряжения на косинус угла сдвига фаз между ними (cos φ ).

Мощность, которая не была передана в нагрузку, а привела к потерям на нагрев и излучение, называется реактивной мощностью. Она равна произведению действующих значений тока и напряжения на синус угла сдвига фаз между ними (sin φ).

Таким образом, реактивная мощность является величиной характеризующей нагрузку. Она измеряется в вольт амперах реактивных (вар, var). На практике чаще встречается понятие косинус фи, как величины характеризующей качество электроустановке с точки зрения экономии электроэнергии.

Действительно, чем выше cos φ, тем больше энергии, подаваемой от источника, попадает в нагрузку. Значит можно использовать менее мощный источник и меньше энергии пропадает зря.

Реактивная мощность может рассматриваться как характеристика скорости обмена электрической энергией между источником и магнитным полем электроприемника. В отличие от активной мощности реактивная мощность не выполняет непосредственно полезной работы, она служит для создания переменных магнитных полей в индуктивных электроприемниках (например, в асинхронных двигателях, силовых трансформаторах и др.), непрерывно циркулируя между источником и потребляющими ее электроприемниками.

Реактивная мощность бытовых потребителей

Итак, потребители переменного тока имеют такой параметр, как коэффициент мощности cosφ.

На графике ток сдвинут на 90° (для наглядности), то есть на четверть периода. Например, электрооборудование имеет cosφ = 0,8, что соответствует углу arccos 0,8 ≈ 36.8°. Этот сдвиг происходит из-за наличия в потребителе электроэнергии нелинейных компонентов – ёмкостей и индуктивностей (например, обмотки электродвигателей, трансформаторов и электромагнитов).

Для дальнейшего понимания происходящего требуется учет того факта, что, чем выше коэффициент мощности (максимум 1), тем более эффективно потребитель использует получаемую из сети электроэнергию (то есть большее количество энергии преобразуется в полезную работу) – такую нагрузку называют резистивной.

При резистивной нагрузке ток в цепи совпадает с напряжением. А при низком коэффициенте мощности нагрузку называют реактивной, то есть часть потребляемой мощности не совершает полезной работы.

Таблица ниже демонстрирует классификацию потребителей по коэффициенту мощности.

Классификация потребителей переменного тока

Следующая таблица демонстрирует коэффициент мощности распространённых в быту потребителей электроэнергии.

Коэффициент мощности бытовых электроприборов

Юмор электрика

Что такое реактивная мощность? Все очень просто!

Способы компенсации реактивной мощности

Из сказанного выше вытекает, если нагрузка индуктивная, то следует компенсировать ее с помощью емкостей (конденсаторов) и наоборот емкостную нагрузку компенсируют с помощью индуктивностей (дросселей и реакторов). Это помогает увеличить косинус фи (cos φ) до приемлемых значений 0.7-0.9. Этот процесс называется компенсацией реактивной мощности.

Экономический эффект от компенсации реактивной мощности

Экономический эффект от внедрения установок компенсации реактивной мощности может быть очень большим. По статистике он составляет от 12 до 50% от оплаты электроэнергии в различных регионах России. Установка компенсации реактивной мощности окупается не более чем за год.

Для проектируемых объектов внедрение конденсаторной установки на этапе разработки позволяет экономить на стоимости кабельных линий за счет снижения их сечения. Автоматическая конденсаторная установка, например, может поднять cos φ с 0.6 до 0.97.

Читайте так же:
Кто должен менять счетчик если квартира не приватизированная

Выводы

Итак, установки по компенсации реактивной мощности приносят ощутимые финансовые выгоды. Они также позволяют дольше сохранять оборудование в рабочем состоянии.

Вот несколько причин, по которым это происходит.

1. Уменьшение нагрузки на силовые трансформаторы, увеличение в связи с этим срока их службы.

2. Уменьшение нагрузки на провода и кабели, возможность использования кабелей меньшего сечения.

3. Улучшение качества электроэнергии у электроприемников.

4. Ликвидация возможности штрафов за снижение cos φ.

5. Уменьшение уровня высших гармоник в сети.

6. Снижение уровня потребления электроэнергии.

Как рассчитать потребляемую мощность здания

Количество потребляемой электрической энергии ежегодно возрастает. Основываясь на актуальной статистической информации, даже обычное кухонное оборудование стало потреблять в несколько раз больше энергии, по сравнению с предыдущими годами. Кроме того, в повседневной жизни люди используют компьютеры и многие другие приборы, работающие от сети. Сети электроснабжения часто не могут справиться с такими запросами. Здесь важно разбираться в рассматриваемых понятиях, какой максимальный уровень нагрузки способна выдержать сеть.

Что такое установленная мощность?

Многие модели электротехнического оборудования имеют специальную маркировку, которая указывает на количество тока, выдаваемое во время их нормальной работы в штатном режиме (номинальная величина).


Приборы энергопотребления

Чтобы выполнить расчет, суммируются номинальные значения этих показателей для всех устройств, работающих от электричества и размещенных на объекте. Под рассматриваемым понятием понимают ту мощность, которая генерируется или потребляется промышленным предприятием, территориальной единицей или обособленной отраслью. В качестве номинала может быть взят активный или полный показатель.


Действующая электроустановка

В энергетической промышленности под этим понятием подразумевают наибольшую активность электрической установки при работе в течении длительного промежутка времени без зафиксированных перегрузок, согласно технической инструкции.

Важно! Расчет рассматриваемой величины играет важную роль в процессе проектирования электрических установок. Полученные данные станут залогом бесперебойной работы оборудования на протяжении долгого времени.

Расчёт мощности по току и напряжению

Посчитать потребление P можно, зная эти два параметра I и U сети. До того, как подобрать кабели или провода для проводки в квартире, нужно определиться с P потребителей, которые можно к ним подключить. Расчёт производят после того, как измерительными приборами фиксируют действующие показания силы тока I (А), а также напряжения U (В).

Однофазная сеть напряжением 220 вольт

При включении в цепь активной нагрузки пользуются формулой: P = U*I. В случае присутствия сдвига фаз между U и I пользуются формулой: P = U*I* cosφ.

Трёхфазная сеть напряжением 380 В

В трёхфазной сети переменного тока со сдвигом фаз результат последней формулы умножают на √3. Значение угла cosφ можно уточнить в справочнике.

При выборе сечения проводов обычно известны суммарная мощность будущих потребителей и напряжение сети.

Нужна только сила тока формула через мощность и напряжение которой имеет вид:

У формулы для расчёта тока, используя мощность и напряжение, следующие составляющие:

  • P – известная мощность прибора, (Вт);
  • U – напряжение питания, (220/380 В);
  • cosφ – угол сдвига фаз.

Расчет тока можно выполнить с помощью онлайн-калькулятора.

Что такое расчетная мощность?

Под этим определением понимают установленный показатель, позволяющий подключить некое количество единиц техники одновременно. Если превысить их допустимое число, защитная автоматическая система может выйти из строя. Расчет установленной мощности выполняется путем суммирования этого показателя, которым характеризуется каждый подключенный прибор в системе.

Вам это будет интересно Применение полевых транзисторов

Важно! Межэтажное пространство жилого дома снабжено электрощитом и вводным устройством, от которого проложены кабели до каждой квартиры. В случае, когда система располагается в жилом помещении, в него прокладывают кабель с необходимым сечением. Для защиты разводящих линий устанавливают автомат, счетное устройство и щит для равномерного распределения нагрузок на каждой линии.


Электрощит

Расчет мощности лампочек

Подбор мощности ламп накаливания зависит от желаемой величины освещённости жилого помещения. Одна лампочка мощностью 100 Вт, работая в тёмное время суток не менее 12 часов, потребляет мощность 1,2 кВт. За месяц это составит 36 кВт, за год – не менее 432 кВт. Если лампочек в квартире 10 шт., то суммарное годовое потребление составит 4320 кВт. При цене за 1 кВт электроэнергии – 5 рублей, сумма получается приличная – 21000 рублей. Поэтому замена ламп накаливания на энергосберегающие источники света: светодиодные лампы, светодиодные ленты и им подобные, позволяет экономить средства. Кроме того, снижение мощности таких лампочек не снижает величины светового потока. Пониженное напряжение питания светодиодных лент также понижает величину потребляемой мощности.

Отличия расчетной мощности от установленной

Нередко возникает вопрос: «Чем отличается установленная мощность от расчетной?». Номинальное значение установленной величины указывается на упаковке оборудования самим изготовителем. Оно дает представление о том, как прибор будет работать в бесперебойном режиме на протяжении долгого времени. Расчетная же величина говорит о фактической величине, которая изменяется в процессе колебания нагрузок по наибольшему возможному воздействию на единицу электросистемы.

Несмотря на различия, оба понятия, все же связаны друг с другом. Такая связь учитывается при осуществлении проектных работ. Установленное значение вычисляется на основе расчетного, с учетом коэффициентов для единовременного включения всех нагрузок в системе.

Читайте так же:
Жилищник вешняки поверка счетчиков

Полная мощность и ее составляющие

Электрическая мощность – это величина, отвечающая за скорость изменения или передачи электроэнергии. Полная мощность обозначается буквой S и находится как произведение действующих значений тока и напряжения. Её единица измерения – вольт-ампер (В·А; V·A).

Полная мощность может складываться из двух составляющих: активной (P) и реактивной (Q).

Активная мощность измеряется в ваттах (Вт; W), реактивная – в варах (Вар).

Это зависит от того, какой тип нагрузки включён в цепь потребления электроэнергии.

Активная нагрузка

Такой тип нагрузки представляет собой элемент, оказывающий сопротивление электрическому току. В результате чего ток выполняет работу по нагреву нагрузки, и электричество превращается в тепло. Если к батарейке последовательно подключить резистор на любое сопротивление, то ток, проходящий по замкнутой цепи, будет нагревать его до тех пор, пока батарейка не разрядится.

Как повысить расчетную мощность

Для увеличения расчетных данных вводят дополнительный кабель с нужным сечением, величину которого определяют специалисты. Это дает гарантию, что пиковые нагрузки не выведут из строя электрическую систему. Процесс считается затруднительным из-за обязательного согласования работ с муниципальными структурами и дополнительными затратами.

Средние нагрузки

Вычисление нагрузок выполняется по двум причинам:

  • Зная выделенную мощность для конкретного дома, его жильцы могут обратиться в компанию энергосбыта для того, чтобы получить именно те значения, которые им необходимы;
  • Основываясь на средних нагрузках, выбираются номинальные токи защитных аппаратов и проводники с оптимальным сечением.

Важно! Для определения средних нагрузок необходимо вычислить установленную величину и знать расчетные коэффициенты, которые принимаются во внимание в вычислениях. Один из них – коэффициент спроса. Средние нагрузки нужно знать для вычисления количества потерянной электрической энергии за годовой период.

Вам это будет интересно Особенности конденсаторов

Для расчетов средней нагрузки ( используют также отношение общего количества потребляемой за смену энергии с максимальной загруженностью ( ) и длительностью смены, измеряемой в часах ( ):

Расчет потребляемой электрической мощности дома

Информация о материале

Основным показателем, рассчитываемым в проекте электрики частного дома, является общая потребляемая мощность. Заказав проект электрики, владелец частного дома обязательно получит цифру потребляемой мощности, которая будет в нем указана. Но часто бывает полезно понять ориентировочную потребляемую мощность еще до заказа проекта, на этапе покупки «киловатт». Предварительный расчет поможет Вам определиться с величиной покупаемой мощности (если есть различные предложения), а также осмысленно подойти к своим потребностям в части энергопотребления. Иногда бывает выгоднее отказаться от некоторых энергопотребителей, чем платить за лишние киловатты.

Основой расчета общей потребляемой мощности частного дома, выполняемого в ходе проектирования электрики, являются нагрузки оконечных потребителей электроэнергии. Именно данные о примерном потреблении электричества элементами освещения, силовым оборудованием и бытовыми приборами, используемыми в Вашем доме, и дадут возможность проведения самостоятельной «прикидки» требуемых киловатт.

Для самостоятельного расчета требуемой электрической мощности на Ваш дом, приводим таблицу «Ведомость потребителей электроэнергии (ориентировочная)» (Таблица №1). Данные, приведенные в таблице, основаны на нашем опыте проектирования систем электроснабжения и освещения частных домов. Являясь ориентировочными, приведенные значения потребляемой мощности достаточно точно отражают их реальные значения, поскольку взяты из технических паспортов на соответствующее оборудование.

Таблица 1. Ведомость потребителей электроэнергии (ориентировочная)

Наименование оборудованияРн, кВт (за ед.)Uн, В сети
Лампа накаливания0,04…0,10220
Лампа люминесцентная0,04220
Лампа светодиоднаяийпрлиныителиельнойнергии0,02220
Лампа галогенная0,04220
Розеточное место0,1220
Холодильник0,5220
Электроплита4220
Кухонная вытяжка0,3220
Посудомоечная машина1,5220
Измельчитель отходов0,4220
Электроподжиг плиты0,1220
Аэрогриль1,2220
Чайник2,3220
Кофемашина2,0220
Стиральная машина1,5220
Духовой шкаф1,2220
Посудомоечная машина1,2220
СВЧ-печь1,3220
Гидромассажная ванна0,6220
Сауна6,0380
Котел электрический6-24380
Котел газовый0,2220
Насосное оборудование котельной0,8220
Система химводоподготовки0,2220
Привод ворот0,4220
Телевизор «Плазма»0,4220
Освещение улицы1,0220
Компьютерное место0,9220
Электрический теплый пол0,1-1,2220
Септик0,3-1,0220
Канализационно-напорная станция0,3-2,5220-380
Кондиционер1,5220
Вентиляционная установка0,3-7,4220-380
Сауна3,8-14220-380
Электрокамин0,3220
Проводы рольставен0,3220
Электрические полотенцесушители0,3-1,2220
Парогенератор2,0-7,0380
Скважный насос0,8-5,0220-380

Кроме данных, приведенных в таблице 1, для расчета также понадобится коэффициент спроса, значение которого четко определено нормативными документами и приведено в таблице №2.

Таблица 2. Коэффициенты спроса (по нормативам)

Заявленная мощность,│до 14│ 20 │ 30 │ 40 │ 50 │ 60 │ 70 и более │

│ кВт │ │ │ │ │ │ │ │

│Коэффициент спроса │ 0,8 │0,65 │ 0,6 │0,55 │ 0,5 │0,48 │ 0,45 │

Пример: если сумма потребителей у вас получилась 32,8 кВт, то по таблице №1 коэффициент спроса будет равен 0,6. Умножив 32,8 кВт на 0,6, получим ориентировочное значение потребляемой мощности (на дом) 19,68 кВт.

Полученную оценку потребляемой мощности Вашего дома Вы можете использовать в дальнейшем для корректировки значения приобретаемой мощности, либо своих потребностей, если выделенная мощность меньше полученного значения.

Читайте так же:
Joomla код счетчика не найден

Особенности расчёта в цепях переменного электричества

Чтобы выполнить расчёты P, потребляемой нагрузкой в цепях изменяющегося электричества, нужно чётко разделять схемы включения. Они могут быть однофазными и трёхфазными.

В однофазных цепях P находят, перемножив значение силы тока на значение напряжения (220 В). При этом учитывают наличие фазного сдвига между ними.

В трёхфазных сетях с напряжением 380 В рассматривают два случая:

  • симметричная нагрузка по фазам;
  • ассиметричная нагрузка фаз.

В первом случае P находят по формуле:

Во втором случае необходимо рассчитывать P для каждой фазы (А, В, С). Общее значение P – это результат суммирования:

P общ = PфА + PфВ + PфС.

Внимание! Когда необходимо найти полную мощность трёхфазной цепи, находят по такому же принципу значения реактивной Q.

Рассчитать ток по мощности, зная, какое напряжение: фазное (220 В) или линейное (380 В), можно и в этом случае, выразив его из общей формулы P.

Активная и реактивная мощность – что это

Отправим материал на почту

  • Что это означает
  • Полная мощность
  • Учет реактивной мощности двигателей
  • Заключение

Начнем с того, что активная и реактивная мощность, это постоянные спутники нашей жизни, хотя подавляющее большинство граждан любой страны попросту не обращают на это никакого внимания. Кроме того, ассоциации, которые возникнут у многих людей при слушании или прочтении слова «реактивный», будут выглядеть, как реактивные турбины, а по большей части – современный самолет, увиденный в фильмах. Это, конечно же, далеко от истины, поэтому, вначале лучше разобраться в этих понятиях на самом простом примере из жизни.

Разобраться, что такое активная и реактивная мощность нам поможет пример двух неразлучных сестричек (условно назовем их Валя и Даша), приехавших летом на загородную дачу вместе, так как они не представляют жизни друг без друга. Валя по прибытию пошла в сарай, взяла лопату, тяпку, грабли, мешок (ведро) для мусора и пошла, работать на приусадебный участок. А вот Даша решила использовать выезд за город, как возможность отдохнуть, поэтому целый день прыгала, веселилась, лежала на топчане под деревом, наслаждаясь свежим воздухом. Получается, что Валя в этом случае представляет активную мощность (P кВт), а Даша реактивную (Q квар), хотя вместе взятые они выглядят, как бригада или полная мощность. На изображении треугольника, приведенном выше, Валя будет представлять катет BC, Даша — катет AC, а обе сестры месте взятые — гипотенузу AB (запомните этот пример – мы вспомним его позже).

Видео описание

Простыми словами о реактивной мощности.

Что это означает

В сетях переменного тока, которыми на сегодняшний день пользуется абсолютно весь мир, без активной и реактивной мощностей никак не обойтись – они взаимозависимы и даже необходимы. К активной электроэнергии относится напряжение, которое вырабатывается на ТЭС, ГрЭС, АЭС, мобильном генераторе, стоящем в гараже и т.д. – оно поступает к потребителю (на фабрики, заводы, к нам домой) и питает все электроприборы от сети ≈220-380 V. В это же время функция реактивной составляющей полного тока заключается в бесцельном блуждании от источника к потребителю и обратно. Так откуда же берётся эта, бесполезная на первый взгляд, субстанция?

Все дело в том, что в наших домах, на предприятиях и любых других электрифицированных объектах есть приборы с индуктивными катушками (для примера можно взять статор двигателя), где постоянно возникают магнитные поля. То есть, часть из них вращает ротор (якорь), а часть возвращается обратно и так до бесконечности, пока существует движение активной энергии. Это хорошо демонстрирует кружка свежего пива: с жидкостью человек выпивает лишь малую часть пены, а остальную оставляет в бокале либо сдувает на землю. Но эта самая пена является продуктом брожения (индукции), без которого пива, как такового, не будет вообще.

Сейчас уже можно подвести первый итог в понимании темы: если есть индуктивная нагрузка (а она есть всегда), то обязательно появится реактивный ток, потребляемый индукцией, которая сама его создает. То есть, индукция вырабатывает реактивную мощность, потом её потребляет, вырабатывает заново и так постоянно, но в этом кроется одна проблема. Для движения реактивной субстанции туда обратно, нужна активная энергия, которая расходуется из-за постоянного движения электронов по проводам (нагрев проводов).

Можно прийти к выводу, что активная мощность генератора, это полное противопоставление реактивной, на первый взгляд бесполезной мощности? Но это не так. Вспомните, сестры неразлучны между собой, так как любят друг друга, а пиво без пены никто не станет пить, да и забродить без неё напиток будет не в состоянии. То же можно сказать о реактивной мощности – без неё невозможно создание магнитных полей, так что с этой силой придется считаться. Но тут в дело пошли мозговые извилины изобретателей, которые решили сократить территориальное пространство (не гонять по проводам взад-вперед) этой, не совсем понятной, субстанции и вырабатывать её в непосредственной близости от объекта потребления.

Для наглядного примера можно взять всем известный электрический фен, в котором есть двигатель, вращающий вал с лопастями – он называется турбиной для подачи горячего воздуха. Так вот, чтобы разгрузить линию электропередач от бесполезной беготни реактива от станции к потребителю и обратно, в корпус прибора встраивают конденсатор нужной емкости. А представьте себе ту же электросварку или токарный цех с десятками мощных станков, – какой потенциал высвобождается реактивным током для увеличения КПД. Если говорить техническим языком, то установка конденсаторов или других статических компенсирующих элементов называется компенсацией реактивной мощности. Получается, что активная и реактивная мощность, это две неразрывно связанных между собой величины.

Читайте так же:
Государственный центр метрологии поверка счетчиков

Вырабатывать реактивную мощность могут также и генераторы на электростанциях любого типа. Для этого достаточно сменить ток возбуждения (перевозбуждения, недовозбуждения) и генератор окажется как поставщиком, так и потребителем этой величины. Но, это всего лишь законы физики, которые в данном случае не очень выгодны для людей, поэтому лучше всего переносить емкость накопления и отдачи, как можно ближе к источнику – в корпус прибора (агрегата) или в производственный цех.

Видео описание

Реактивная мощность за 5 минут простыми словами.

Реактивная мощность — еще раз коротко о главном

Все чаще в различных изданиях и СМИ, в рамках информации о реализации Федерального закона от 23 ноября 2009 г. N 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности…» встречается информация о борьбе с реактивной мощностью в сетевых компаниях и на промышленных предприятиях. Что же это за такое зло, что для борьбы с ним сетевыми компаниями тратятся сотни миллионов рублей, разрабатываются специальные долгосрочные целевые программы мероприятий по управлению реактивной мощностью в электрических сетях, ведутся агитации среди крупных потребителей электроэнергии на установку устройств по компенсации реактивной мощности. Так ли она важна и необходима эта компенсация?

Зачастую, многие потребители подсознательно полагают, что генерирующие компании поставляют два типа электрической энергии, так как оплачивают счета за потребленную активную и реактивную мощность, составляющие полной мощности выдаваемой генерирующими подстанциями. Хотя на самом деле понятие реактивной мощности хоть и общепринято и употребляемо, но не совсем корректно, так как физически реактивной мощности (именно в классическом понимании мощности, как отношения работы ко времени) не существует, так как никакой работы она не совершает.

Активная мощность — та часть электрической энергии, которая идет на совершение полезной работы и в процессе потребления преобразуется в другие типы энергии, например тепловую, механическую или световую.

Название реактивная мощность, по аналогии с реактивным сопротивлением, обусловлено способностью индуктивных и емкостных элементов накапливать и отдавать обратно в сеть, запасенную магнитную или электрическую энергию, и проявлять кажущиеся сопротивление только в цепях переменного тока. В то время как активное сопротивление зависит только от конкретного материала проводника.

Согласно общепринятому утверждению, под условным термином «реактивная мощность» понимают вторую составляющую полной мощности в сетях переменного тока, характеризующую интенсивность обмена/циркуляции электрической энергии между источником и подключенной к нему реактивной нагрузки (элементов индуктивности и/или конденсаторов), которая необходима только для расчетов определяющих влияние реактивных элементов на сеть.

Индуктивные (катушки в трансформаторах, дросселях, индукционных печах, двигателях и пр.) и емкостные (конденсаторные батареи) элементы практически не расходуют электроэнергии (без учета магнитного рассеивания и утечек в конденсаторах), хотя она и используется для создания электромагнитных и электрических/электростатических полей, но в процессе разряда возвращается обратно в сеть. Так как энергия циркулирует, то соответственно есть изменения тока и напряжения, которые можно посчитать в виде условной реактивной мощности используемой только для совершения данных преобразований.

Для электрических цепей в зависимости от подключаемого оборудования можно выделить три ситуации:

  • если оборудование имеет практически чистую активную (резистивную) нагрузку, например, лампы накаливания, утюги, электроплиты и др. приборы, то протекающий через цепь переменный ток будет синфазен напряжению (см. рис. ниже). Т.е. ток и напряжение будут совпадать по фазе, угол между напряжением и током ϕ=0. Для данного случая мощность является полностью активной и определяется как произведение тока на напряжение. Мощность, переданная источником, полностью тратится на совершение работы.


Рис. Диаграмма напряжения, тока и мощности для активной (резистивной) нагрузки.

  • в оборудовании преобладает только индуктивная нагрузка. В данном случае имеется ситуация когда ток отстает от напряжения на уголϕ (см. рис. ниже), это связано со свойственной индуктивности инерционностью, задерживать появление тока. Для идеального случая, когда ϕ = 90° (в некоторой степени подходит для асинхронных двигателей и трансформаторов, работающих на холостом ходу ϕ > 80°), как видно из рисунка, в первой четверти периода происходит потребление энергии для создания магнитного поля, а во второй четверти его обратная генерация в сеть, т.е. происходит обмен мощностью.

Рис. Диаграмма напряжения, тока и мощности для индуктивной нагрузки.

  • третья ситуация аналогична предыдущей, но в данном случае для оборудования с только емкостной нагрузкой, проходящий через него ток будет опережать напряжение (см. рис. ниже).

Рис. Диаграмма напряжения, тока и мощности для емкостной нагрузки.

В реальности нагрузка имеет более-менее выраженную индуктивно-емкостную нагрузку (см. рис. ниже), зависящую от параметров самого оборудования. Из-за смещения фаз напряжения и тока уменьшается величина активной мощности, используемой для совершения полезной работы в системах с индуктивной нагрузкой, так как часть электрической энергии (реактивной мощности) будет циркулировать в энергосистеме и тратиться только на создание магнитных полей, не совершая ничего полезного, что в свою очередь приводит к увеличению тока необходимого для полноценной работы оборудования. В то же время, как известно, все проводники обладают активным сопротивлением, и циркуляция больших токов в системе будет приводить к их нагреву (величина нагрева, а соответственно и потерь, как известно, пропорциональна квадрату тока), а соответственно и к потерям электрической энергии.

Рис. Диаграмма напряжения, тока и мощности для индуктивно-емкостной нагрузки.

Для расчетов полной мощности применяется формула,

Читайте так же:
Сброс счетчика лампы sanyo

где, P — активная мощность, определяется по формуле,

Q — реактивная мощность, определяется по формуле,

U — напряжение, I — сила тока, ϕ — угол между напряжением и током.

Как было сказано выше, перетоки реактивной мощности в сети не выполняют полезной работы, при этом загружают источник, силовые линии, и все коммутационное оборудование, установленное между генерирующими станциями и конечными потребителями, а также нагревая кабели и линии высоковольтных передач, снижая тем самым их пропускную способность (с увеличением температуры растет сопротивление проводов) и создавая бесполезное тепло. Зачем же греть окружающую среду и еще платить за это деньги?

Помимо этого снижение пропускной способности и увеличение потерь из-за нагрева проводов ведет к значительным отклонениям напряжения, нормируемым в соответствии с ГОСТ 13109-97, что в конечном итоге негативно сказывается на:

  • уменьшение вращающего момента и частоты вращения асинхронных двигателей, что в конечном итоге, при соответствующей нагрузке может привести к его остановке. Одновременно с уменьшением напряжения (снижения реактивной мощности на 2-3 % за каждый процент напряжения) пропорционально вырастит ток двигателя, что может привести к перегреву изоляции обмоток и уменьшения его срока службы.
  • уменьшение световой отдачи осветительных приборов, что скажется на производительности труда рабочих. Для люминесцентных ламп снижения/повышения напряжения на 10% приводят к уменьшению их срока службы на 20-25%. Помимо этого, учитывая то, что многие производители компактных люминесцентных ламп не используют в ЭПРА корректоры коэффициента мощности (ККФ), увеличение питающего напряжения ведет к увеличению потребления реактивной мощности. Без ККФ значение коэффициента мощности находиться на уровне 0.5, что делает проблему компенсации также актуальной для индивидуальных потребителей электроэнергии со значительным количеством данных ламп.
  • качество работы и длительность эксплуатации различной бытовой электроаппаратуры.
  • на качество работы сварочного оборудования, так при отклонениях напряжения до 15%, на машинах для точечной сварки будет гарантированно получаться брак.
  • качество и устойчивость работы энергетических систем, возможно появление такой ситуации как «лавина напряжении», обусловленная нарастающим дефицитом реактивной мощности.

Исходя из всего вышесказанного, решение проблем по компенсации реактивной мощности занимают одно из важнейших мест среди мероприятий направленных на повышение эффективности распределения, передачи и потребления электроэнергии. Ведь от их результатов зависит качественное электроснабжение, а также экономия средств по оплате за потребленную электроэнергию (активную и реактивную) и материальных ресурсов. Поэтому в зависимости от конкретной ситуации, все вопросы по компенсации реактивной мощности необходимо решать с учетом современных разработок и решений для данной области.

Основной безразмерной величиной, характеризующей преобладание реактивной составляющей в оборудование, является коэффициент мощности, который численно равен косинусу сдвига тока относительно приложенного к нагрузке напряжения или отношению потребляемой оборудованием активной мощности (Р), к полной (S).

Таким образом, многие предприятия и генерирующие/распределительные сетевые компании стремятся увеличить cos(ϕ) до 1, чтобы в значительной мере снизить величину потребляемой реактивной мощности. Как было приведено выше, в быту и промышленности в основном преобладает оборудование с индуктивным характером нагрузки, с отставанием тока от напряжения, поэтому используя устройства с емкостной нагрузкой, удается уменьшить сдвиг между током и напряжением в фазе, а соответственно добиться cos(ϕ), близкого к единице.

Этого можно достичь с минимальными затратами путем использования компенсирующих установок построенных на базе конденсаторов (конденсаторные установки КРМ, АУКРМ, батареи статических конденсаторов), более дорогих синхронных двигателей в режиме перевозбуждения или тиристорных схем с фильтрами, устанавливаемых непосредственно вблизи оборудования с преобладающей реактивной нагрузкой или группами, на распределительных подстанциях предприятия. Так создание электрической энергии с преобладающей емкостной характеристикой с генерирующих синхронными генераторами подстанций, в целом не целесообразно, ввиду тех же самых потерь при передаче и распределении электрической энергии.

В последнее время все более востребованными становятся конденсаторные установки АУКРМ, позволяющие производить более точную коррекцию коэффициента мощности с учетом изменения значений, потребляемой мощности от токов нагрузки, напряжения, времени суток.

При этом при формировании конденсаторной установки желательно обеспечивать максимально малый шаг регулирования, но с использованием минимального количества конденсаторов. В конечном итоге грамотный выбор определенного оборудования для компенсации реактивной мощности определяется на основании технико-экономических расчетов, характера преобладающей в сетях предприятия реактивной нагрузки, что позволит достигнуть положительного экономического эффекта при минимальных сроках окупаемости внедренного оборудования.

По материалам компании «Нюкон»

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector